期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen 被引量:12
1
作者 Nan Xiao Songsong Li +3 位作者 Xuli Li Lei Ge Yangqin Gao Ning Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第4期642-671,共30页
Photocatalytic hydrogen(H2)evolution via water spilling over semiconductors has been considered to be one of the most promising strategies for sustainable energy supply in the future to provide non-pollution and renew... Photocatalytic hydrogen(H2)evolution via water spilling over semiconductors has been considered to be one of the most promising strategies for sustainable energy supply in the future to provide non-pollution and renewable energy.The key to efficient conversion of solar-chemical energy is the design of an efficient structure for high charge separation and transportation.Therefore,cocatalysts are necessary in boosting photocatalytic H2 evolution.To date,semiconductor photocatalysts have been modified by various cocatalysts due to the extended light harvest,enhanced charge carrier separation efficiency and improved stability.This review focuses on recent developments of cocatalysts in photocatalytic H2 evolution,the roles and mechanism of the cocatalysts are discussed in detail.The cocatalysts can be divided into the following categories:metal/alloy cocatalysts,metal phosphides cocatalysts,metal oxide/hydroxide cocatalysts,carbon-based cocatalysts,dual cocatalysts,Z-scheme cocatalysts and MOFs cocatalysts.The future research and forecast for photocatalytic hydrogen generation are also suggested. 展开更多
关键词 COCATALYSTS photocatalytsts Hydrogen evolution Charge separation Water splitting
下载PDF
Mechanism investigation of A-site doping on modulating electronic band structure and photocatalytic performance towards CO_(2) reduction of LaFeO_(3) perovskite
2
作者 Chi Cao Jinshuo Li +2 位作者 Yang Hu Lin Zhang Wensheng Yang 《Nano Research》 SCIE EI CSCD 2024年第5期3733-3744,共12页
Three kinds of metal atoms with different valence electronic configurations,Bi(6s^(2)6p^(3)),Y(4d^(1)5s^(2)),and Ce(4f^(1)5d^(1)6s^(2)),were selected to investigate the effect of A-site(La^(3+))doping on electronic ba... Three kinds of metal atoms with different valence electronic configurations,Bi(6s^(2)6p^(3)),Y(4d^(1)5s^(2)),and Ce(4f^(1)5d^(1)6s^(2)),were selected to investigate the effect of A-site(La^(3+))doping on electronic band structure,photoelectric properties,and photocatalytic performance of LaFeO_(3) perovskite.It was identified that the Bi doped LaFeO_(3) presented significantly improved photocatalytic activity towards the reduction of CO_(2),while the Y or Ce doped LaFeO_(3) displayed decreased photocatalytic activity compared to the pristine LaFeO_(3).It was revealed that doping of all the three metal atoms resulted in narrowed band gap and thus extended light absorption of LaFeO_(3) by lowering its conduction band minimum(CBM).The recombination rate and mobility of the charge carriers were represented by the relative effective mass(D)between holes and electrons for pristine and A-site doped LaFeO_(3).The doping of Bi resulted in increased D value,attributed to the Bi 6s electron states at the valence band maximum(VBM),and thus promoted separation and transfer of the charge carriers and improved photocatalytic activity of LaFeO_(3).In contrast,the doping of Ce resulted in significantly decreased D value,induced by the highly localized Ce 4f hole states at the CBM,and thus higher recombination rate of the charge carriers and decreased photocatalytic activity of LaFeO_(3).Furthermore,the Y doped LaFeO_(3) with a slightly decreased D value presented slightly increased recombination rate of the charge carriers and thus decreased photocatalytic activity.Such a work provides new insights into the A-site doping in LaFeO_(3) perovskite,which should be helpful for optimizing the electronic band structure and activity of perovskite-type photocatalysts at atomic level. 展开更多
关键词 A-site doping electronic band structure charge carrier behavior photocatalytic CO_(2)reduction perovskite-type photocatalytsts
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部