The utilization of processing capabilities within the detector holds significant promise in addressing energy consumption and latency challenges. Especially in the context of dynamic motion recognition tasks, where su...The utilization of processing capabilities within the detector holds significant promise in addressing energy consumption and latency challenges. Especially in the context of dynamic motion recognition tasks, where substantial data transfers are necessitated by the generation of extensive information and the need for frame-by-frame analysis. Herein, we present a novel approach for dynamic motion recognition, leveraging a spatial-temporal in-sensor computing system rooted in multiframe integration by employing photodetector. Our approach introduced a retinomorphic MoS_(2) photodetector device for motion detection and analysis. The device enables the generation of informative final states, nonlinearly embedding both past and present frames. Subsequent multiply-accumulate (MAC) calculations are efficiently performed as the classifier. When evaluating our devices for target detection and direction classification, we achieved an impressive recognition accuracy of 93.5%. By eliminating the need for frame-by-frame analysis, our system not only achieves high precision but also facilitates energy-efficient in-sensor computing.展开更多
An in-depth understanding of the photoconductivity and photocarrier density at the interface is of great significance for improving the performance of optoelectronic devices. However, extraction of the photoconductivi...An in-depth understanding of the photoconductivity and photocarrier density at the interface is of great significance for improving the performance of optoelectronic devices. However, extraction of the photoconductivity and photocarrier density at the heterojunction interface remains elusive. Herein, we have obtained the photoconductivity and photocarrier density of 173 nm Sb2Se3/Si(type-Ⅰ heterojunction) and 90 nm Sb2Se3/Si(type-Ⅱ heterojunction) utilizing terahertz(THz) time-domain spectroscopy(THz-TDS) and a theoretical Drude model. Since type-Ⅰ heterojunctions accelerate carrier recombination and type-Ⅱ heterojunctions accelerate carrier separation, the photoconductivity and photocarrier density of the type-Ⅱ heterojunction(21.8×10^(4)S·m^(-1),1.5 × 10^(15)cm^(-3)) are higher than those of the type-Ⅰ heterojunction(11.8×10^(4)S·m^(-1),0.8×10^(15)cm^(-3)). These results demonstrate that a type-Ⅱ heterojunction is superior to a type-Ⅰ heterojunction for THz wave modulation. This work highlights THz-TDS as an effective tool for studying photoconductivity and photocarrier density at the heterojunction interface. In turn, the intriguing interfacial photoconductivity effect provides a way to improve the THz wave modulation performance.展开更多
Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe...Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe challenges.In this study,PCSSs with various structures were prepared on 4-inch diameter,500μm thick high-purity semi-insulating 4H-SiC substrates and their on-state resistance and damage mechanisms were investigated.It was found that the PCSS of an Au/TiW/Ni electrode system annealed at 950℃had a minimum on-state resistance of 6.0Ωat 1 kV bias voltage with a 532 nm and 170 mJ pulsed laser by backside illumination single trigger.The backside illumination single trigger could reduce on-state resistance and alleviate the damage of PCSS compared to the frontside trigger when the diameter of the laser spot was larger than the channel length of PCSS.For the 200 s trigger test by a 10 Hz laser,the black branch-like ablation on Au/TiW/Ni PCSS was mainly caused by thermal stress owing to hot carriers.Replacing metal Ni with boron gallium co-doped zinc oxide(BGZO)thin films annealed at 400℃,black branch-like ablation was alleviated while concentric arc damage was obvious at the anode.The major causes of concentric arc are both pulsed laser diffraction and thermal effect.展开更多
Light induced changes in a-Si∶H films are investigated by transient photoconductivity.The transient photoconductivity decay data can neither be fit well by common power-law for transient photocurrent in amorphous sem...Light induced changes in a-Si∶H films are investigated by transient photoconductivity.The transient photoconductivity decay data can neither be fit well by common power-law for transient photocurrent in amorphous semiconductors,nor by stretched exponential rule for transient decay from the steady state in photoconductivity.Instead,the data are fit fairly well with a sum of two exponential functions.The results show that the long time decay is governed by deep traps rather than band tail states,and two different traps locating separately at 0.52 and 0.59eV below E _c are responsible for the two exponential functions.They are designated as negatively charged dangling bond D - centers.The light-induced changes in photoconductivity are attributed mainly to the decrease in electron lifetime caused by the increase of recombination centers after light soaking.展开更多
基金supported by the National Natural Science Foundation of China (52322210, 52172144, 22375069, 21825103, and U21A2069)National Key R&D Program of China (2021YFA1200501)+2 种基金Shenzhen Science and Technology Program (JCYJ20220818102215033, JCYJ20200109105422876)the Innovation Project of Optics Valley Laboratory (OVL2023PY007)Science and Technology Commission of Shanghai Municipality (21YF1454700)。
文摘The utilization of processing capabilities within the detector holds significant promise in addressing energy consumption and latency challenges. Especially in the context of dynamic motion recognition tasks, where substantial data transfers are necessitated by the generation of extensive information and the need for frame-by-frame analysis. Herein, we present a novel approach for dynamic motion recognition, leveraging a spatial-temporal in-sensor computing system rooted in multiframe integration by employing photodetector. Our approach introduced a retinomorphic MoS_(2) photodetector device for motion detection and analysis. The device enables the generation of informative final states, nonlinearly embedding both past and present frames. Subsequent multiply-accumulate (MAC) calculations are efficiently performed as the classifier. When evaluating our devices for target detection and direction classification, we achieved an impressive recognition accuracy of 93.5%. By eliminating the need for frame-by-frame analysis, our system not only achieves high precision but also facilitates energy-efficient in-sensor computing.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12261141662, 12074311, and 12004310)。
文摘An in-depth understanding of the photoconductivity and photocarrier density at the interface is of great significance for improving the performance of optoelectronic devices. However, extraction of the photoconductivity and photocarrier density at the heterojunction interface remains elusive. Herein, we have obtained the photoconductivity and photocarrier density of 173 nm Sb2Se3/Si(type-Ⅰ heterojunction) and 90 nm Sb2Se3/Si(type-Ⅱ heterojunction) utilizing terahertz(THz) time-domain spectroscopy(THz-TDS) and a theoretical Drude model. Since type-Ⅰ heterojunctions accelerate carrier recombination and type-Ⅱ heterojunctions accelerate carrier separation, the photoconductivity and photocarrier density of the type-Ⅱ heterojunction(21.8×10^(4)S·m^(-1),1.5 × 10^(15)cm^(-3)) are higher than those of the type-Ⅰ heterojunction(11.8×10^(4)S·m^(-1),0.8×10^(15)cm^(-3)). These results demonstrate that a type-Ⅱ heterojunction is superior to a type-Ⅰ heterojunction for THz wave modulation. This work highlights THz-TDS as an effective tool for studying photoconductivity and photocarrier density at the heterojunction interface. In turn, the intriguing interfacial photoconductivity effect provides a way to improve the THz wave modulation performance.
基金National Key R&D Program of China(2021YFA0716304)Shanghai Science and Technology Programs(22511100300,23DZ2201500)。
文摘Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe challenges.In this study,PCSSs with various structures were prepared on 4-inch diameter,500μm thick high-purity semi-insulating 4H-SiC substrates and their on-state resistance and damage mechanisms were investigated.It was found that the PCSS of an Au/TiW/Ni electrode system annealed at 950℃had a minimum on-state resistance of 6.0Ωat 1 kV bias voltage with a 532 nm and 170 mJ pulsed laser by backside illumination single trigger.The backside illumination single trigger could reduce on-state resistance and alleviate the damage of PCSS compared to the frontside trigger when the diameter of the laser spot was larger than the channel length of PCSS.For the 200 s trigger test by a 10 Hz laser,the black branch-like ablation on Au/TiW/Ni PCSS was mainly caused by thermal stress owing to hot carriers.Replacing metal Ni with boron gallium co-doped zinc oxide(BGZO)thin films annealed at 400℃,black branch-like ablation was alleviated while concentric arc damage was obvious at the anode.The major causes of concentric arc are both pulsed laser diffraction and thermal effect.
文摘Light induced changes in a-Si∶H films are investigated by transient photoconductivity.The transient photoconductivity decay data can neither be fit well by common power-law for transient photocurrent in amorphous semiconductors,nor by stretched exponential rule for transient decay from the steady state in photoconductivity.Instead,the data are fit fairly well with a sum of two exponential functions.The results show that the long time decay is governed by deep traps rather than band tail states,and two different traps locating separately at 0.52 and 0.59eV below E _c are responsible for the two exponential functions.They are designated as negatively charged dangling bond D - centers.The light-induced changes in photoconductivity are attributed mainly to the decrease in electron lifetime caused by the increase of recombination centers after light soaking.