Traditional soft lithography based PDMS device fabrication requires complex procedures carried out in a clean room. Herein, we report a photolithography-free method that rapidly produces PDMS devices in 30 min. By usi...Traditional soft lithography based PDMS device fabrication requires complex procedures carried out in a clean room. Herein, we report a photolithography-free method that rapidly produces PDMS devices in 30 min. By using a laser cutter to ablate a tape, a male photoresist mold can be obtained within 5 min by a simple heating-step, which offers significant superiority over currently used photolithographybased method. Since it requires minimal energy to cut the tape, our fabrication strategy shows good resolution(~ 100 μm) and high throughput. Furthermore, the micro-mold height can be easily controlled by changing the tape types and layers. As a proof-of-concept, we demonstrated that the fabricated PDMS devices are compatible with biochemical reactions such as quenching reaction of KI to fluorescein and cell culture/staining. Collectively, our strategy shows advantages of low input, simple operation procedure and short fabrication time, therefore we believe this photolithography-free method could serve as a promising way for rapid prototyping of PDMS devices and be widely used in general biochemical laboratories.展开更多
基金financial support from the National Natural Science Foundation of China (Nos.21904139,22074152,21735007)Chinese Academy of Sciences (Nos.Y9Y1041001,YJKYYQ20170026)。
文摘Traditional soft lithography based PDMS device fabrication requires complex procedures carried out in a clean room. Herein, we report a photolithography-free method that rapidly produces PDMS devices in 30 min. By using a laser cutter to ablate a tape, a male photoresist mold can be obtained within 5 min by a simple heating-step, which offers significant superiority over currently used photolithographybased method. Since it requires minimal energy to cut the tape, our fabrication strategy shows good resolution(~ 100 μm) and high throughput. Furthermore, the micro-mold height can be easily controlled by changing the tape types and layers. As a proof-of-concept, we demonstrated that the fabricated PDMS devices are compatible with biochemical reactions such as quenching reaction of KI to fluorescein and cell culture/staining. Collectively, our strategy shows advantages of low input, simple operation procedure and short fabrication time, therefore we believe this photolithography-free method could serve as a promising way for rapid prototyping of PDMS devices and be widely used in general biochemical laboratories.