Photoneutron cross-section(PNCS)data are important in various current and emerging applications.Although a few sophis-ticated methods have been developed,there is still an urgent need to study the PNCS data.In this st...Photoneutron cross-section(PNCS)data are important in various current and emerging applications.Although a few sophis-ticated methods have been developed,there is still an urgent need to study the PNCS data.In this study,we propose the extraction of PNCS distributions using a combination of gamma activation and reaction yield ratio methods.To verify the validity of the proposed extraction method,experiments for generating^(62,64)Cu and^(85m,87m)Sr isotopes via laser-induced pho-toneutron reactions were performed,and the reaction yields of these isotopes were obtained.Using the proposed extraction method,the PNCS distributions of^(63)Cu and^(86)Sr isotopes(leading to^(85m)Sr isotope production)were successfully extracted.These extracted PNCS distributions were benchmarked against available PNCS data or TALYS calculations,demonstrating the validity of the proposed extraction method.Potential applications for predicting the PNCS distributions of the 30 iso-topes are further introduced.We conclude that the proposed extraction method is an effective complement to the available sophisticated methods for measuring and evaluating PNCS data.展开更多
The solid-fueled thorium molten salt reactor(TMSR-SF1) is a 10 MW_(th) test reactor design to be deployed in 5-10 years by the TMSR group.Its design combines coated particle fuel and molten FLiBe coolant for great int...The solid-fueled thorium molten salt reactor(TMSR-SF1) is a 10 MW_(th) test reactor design to be deployed in 5-10 years by the TMSR group.Its design combines coated particle fuel and molten FLiBe coolant for great intrinsic safety features and economic advantages.Due to a large amount of beryllium in the coolant salt,photoneutrons are produced by(y,n) reaction,hence the increasing fraction of effective delayed neutrons in the core by the photoneutrons originating from the long-lived fission products.Some of the delayed photoneutron groups are of long lifetime,so a direct effect is resulted in the transient process and reactivity measurement.To study the impact of photoneutrons for TMSR-SF1,the effective photoneutron fraction is estimated using k-ratio method and performed by the Monte Carlo code(MCNP5) with ENDF/B-Ⅶ cross sections.Based on the coupled neutronphoton point kinetics equations,influence of the photoneutrons is analyzed.The results show that the impact of photoneutrons is not negligible in reactivity measurement.Without considering photoneutrons in on-line reactivity measurement based on inverse point kinetics can result in overestimation of the positive reactivity and underestimation of the negative reactivity.The photoneutrons also lead to more waiting time for the doubling time measurement.Since the photoneutron precursors take extremely long time to achieve equilibrium,a "steady" power operation may not directly imply a "real" criticality.展开更多
This work is an attempt to improve the Bayesian neural network (BNN) for studying photoneutron yield cross sections as a function of the charge number Z, mass number A, and incident energy ε. The BNN was improved in ...This work is an attempt to improve the Bayesian neural network (BNN) for studying photoneutron yield cross sections as a function of the charge number Z, mass number A, and incident energy ε. The BNN was improved in terms of three aspects:numerical parameters, input layer, and network structure. First, by minimizing the deviations between the predictions and data, the numerical parameters, including the hidden layer number, hidden node number, and activation function, were selected. It was found that the BNN with three hidden layers, 10 hidden nodes, and sigmoid activation function provided the smallest deviations. Second, based on known knowledge,such as the isospin dependence and shape effect, the optimal ground-state properties were selected as input neurons. Third, the Lorentzian function was applied to map the hidden nodes to the output cross sections, and the empirical formula of the Lorentzian parameters was applied to link some of the input nodes to the output cross sections. It was found that the last two aspects improved the predictions and avoided overfitting, especially for the axially deformed nucleus.展开更多
This paper reports on the results of calculations using a Monte Carlo code (MCNP5) to study the properties of photons, electrons and photoneutrons obtained in the converted target and their transportations in x-ray ...This paper reports on the results of calculations using a Monte Carlo code (MCNP5) to study the properties of photons, electrons and photoneutrons obtained in the converted target and their transportations in x-ray radiography. A comparison between measurements and calculations for bremsstrahlung and photoneutrons is presented. The radiographic rule and the effect of the collimator on the image are studied with the experimental model. The results provide exact parameters for the optimal design of radiographic layout and shielding systems.展开更多
Relativistic electron beams driven by laser wakefield acceleration were utilized to produce ultrashort neutron sources.The experiment was carried out on the 38 fs,~0.5 J,800 nm Ti:Sapphire laser in the 10 TW UT 3 lase...Relativistic electron beams driven by laser wakefield acceleration were utilized to produce ultrashort neutron sources.The experiment was carried out on the 38 fs,~0.5 J,800 nm Ti:Sapphire laser in the 10 TW UT 3 laser lab at University of Texas at Austin.The target gas was a high density pulsed gas jet composed of 90%He and 10%N 2.The laser pulse with a peak intensity of 1.5×10^(18) W/cm^(2) interacted with the target to create a cylindrical plasma channel of 60 mm radius(FWHM)and 1.5 mm length(FWHM).Electron beams of~80 pC with the Gaussian energy distribution centered at 37 MeV and a width of 30 MeV(FWHM)were produced via laser wakefield acceleration.Neutron fluences of~2.4×10^(6) per shot with hundreds of ps temporal length were generated through bremsstrahlung and subsequent photoneutron reactions in a 26.6 mm thick tungsten converter.Results were compared with those of simulations using EPOCH and GEANT4,showing agreement in electron spectrum,neutron fluence,neutron angular distribution and conversion rate.展开更多
Copper-64 is a radioisotope of medical interest that could be used for positron emission tomography imaging and targeted radiotherapy of cancer. In this work,we investigated the possibility of producing the^(64)Cu iso...Copper-64 is a radioisotope of medical interest that could be used for positron emission tomography imaging and targeted radiotherapy of cancer. In this work,we investigated the possibility of producing the^(64)Cu isotope through a^(65)Cu(γ,n) reaction using high-intensity γ-beams produced at the Extreme Light InfrastructureNuclear Physics facility(ELI-NP). The specific activity for^(64)Cu was obtained as a function of target geometry, irradiation time, and electron beam energy, which translates into γ-beam energy. Optimized conditions for the generation of^(64)Cu isotopes at the ELI-NP were discussed. We estimated that an achievable saturation specific activity is of the order of 1–2 m Ci/g for thin targets(radius 1–2 mm,thickness 1 cm) and for a γ-beam flux of 10^(11) s ~1. Based on these results, the ELI-NP could provide great potential for the production of some innovative radioisotopes of medical interest in sufficient quantities suitable for nuclear medicine research.展开更多
Photoneutrons, emitted by means of photonuclear interactions when gas bremsstrahlung interacts with beamline components, can be another potential radiation source needed to be considered for shielding design and dose ...Photoneutrons, emitted by means of photonuclear interactions when gas bremsstrahlung interacts with beamline components, can be another potential radiation source needed to be considered for shielding design and dose assessment of beamline. In this paper, simulations and measurements of photoneutrons dose rate at beamline BL09 U are carried out when Shanghai Synchrotron Radiation Facility(SSRF) running at Top-up mode(3.5 GeV, 235 mA). A geometry model is constructed for the beamline BL09 U with considerations of the scattering process of the major optical components. The model is compiled into Monte Carlo simulation code FLUKA to calculate photoneutron dose distribution. Measurements of the photoneutrons dose rate were performed by using Environmental Neutron Monitor(ENM). Observation points were arranged uniformly along the inside and outside of the optical enclosure(OE) of BL09 U. The calculation results agree with experiments within the measurements uncertainties. It is verified that photoneutrons dose simulation is reliable. The simulation and measurement methods can be applied to evaluate the neutron dose level of other beamline stations, and provide references for the shielding design of the beamlines at SSRF in the near future.展开更多
The 10 MW_(th) solid-fueled thorium molten salt reactor(TMSR-SF1) is a FLi Be salt-cooled pebble bed reactor to be deployed in 5–10 years, designed by the TMSR group. Due to a large amount of beryllium in the core, t...The 10 MW_(th) solid-fueled thorium molten salt reactor(TMSR-SF1) is a FLi Be salt-cooled pebble bed reactor to be deployed in 5–10 years, designed by the TMSR group. Due to a large amount of beryllium in the core, the photoneutrons are produced via(γ , n) reactions.Some of them are generated a long time after the fission event and therefore are considered as delayed neutrons. In this paper, we redefine the effective delayed neutrons into two fractions: the delayed fission neutron fraction and the delayed photoneutron fraction. With some reasonable assumptions, the inner product method and the k-ratio method are adopted for studying the effective delayed photoneutron fraction. In the k-ratio method, the Monte Carlo code MCNP6 is used to evaluate the effective photoneutron fraction as the ratio between the multiplication factors with and without contribution of the delayed neutrons and photoneutrons. In the inner product method, with the Monte Carlo and deterministic codes together, we use the adjoint neutron flux as a weighting function for the neutrons and photoneutrons generated in the core. Results of the two methods agree well with each other, but the k-ratio method requires much more computing time for the same precision.展开更多
Bremsstrahlung photon beams produced by medical linear accelerators are currently the most commonly used method of radiation therapy for cancerous tumors. Photons with energies greater than 8-10 MeV potentially genera...Bremsstrahlung photon beams produced by medical linear accelerators are currently the most commonly used method of radiation therapy for cancerous tumors. Photons with energies greater than 8-10 MeV potentially generate neutrons through photonuclear interactions in the accelerator's treatment head, patient's body, and treat- ment room ambient. Electrons impinging on a heavy target generate a cascade shower of bremsstrahlung photons, the energy spectrum of which shows an end point equal to the electron beam energy. By varying the target thickness, an optimum thickness exists for which, at the given electron energy, maximum photon flux is achievable. If a source of high-energy photons i.e. bremsstrahlung, is conveniently directed to a suitable D20 target, a novel approach for production of an acceptable flux of filterable photoneturons for boron neutron capture therapy (BNCT) application is possible. This study consists of two parts. 1. Comparison and assessment of deuterium photonuclear cross section data. 2. Evaluation of the heavy water photonuclear source.展开更多
Purpose High-energy electron linear accelerators(LINACs)have a wide use in radiotherapy.The photoneutron production in medical linear accelerators,when operating at energies greater than 10 MeV,is an important subject...Purpose High-energy electron linear accelerators(LINACs)have a wide use in radiotherapy.The photoneutron production in medical linear accelerators,when operating at energies greater than 10 MeV,is an important subject to consider in patient’s treatment procedures.In this work,we simulate a typical LINAC to calculate photoneutron dose and flux in radiotherapy room.Methods The latest version of MCNPX Monte Carlo code along with MCNP visual editor has been used to simulate the LINAC and its components.Photoneutron production has been successfully simulated by selecting appropriate physics card and parameters.Dose and flux of produced photoneutrons have been calculated by using mesh tally function.Results Production of photoneutrons in LINAC head and its components have been successfully simulated by using MCNPX code.MCNP visual editor has been used to track the particles.Photoneutron dose and flux have been calculated using mesh tally function,with good results of statistical tests.Conclusion The photoneutron production has been successfully simulated and benchmarked.The proposed simulation code is able to calculate photoneutron dose and flux.According to photoneutron production cross sections,the appropriate parameters have been selected to reduce the run-time of simulation code.展开更多
The Shanghai laser electron gamma source(SLEGS)is a powerful tool for exploring photonuclear physics,such as giant dipole resonance(GDR)and pygmy dipole resonance,which are the main mechanisms of collective nuclear mo...The Shanghai laser electron gamma source(SLEGS)is a powerful tool for exploring photonuclear physics,such as giant dipole resonance(GDR)and pygmy dipole resonance,which are the main mechanisms of collective nuclear motion.The goal of the SLEGS neutron time-of-flight(TOF)spectrometer is to measure GDR and specific nuclear structures in the energy region above the neutron threshold.The SLEGS TOF spectrometer was designed to hold 20 sets of EJ301 and LaBr3 detectors.Geant4 was used to simulate the efficiency of each detector and the entire spectrometer,which provides a reference for the selection of detectors and layout of the SLEGS TOF spectrometer.Under the events of 208Pb,implementations of coincidence and time-of-flight technology for complex experiments are available;thus,and neutron decay events can be separated.The performance of SLEGS TOF spectrometer was systematically evaluated using offline experiments,in which the time resolution reached approximately 0.9 ns.展开更多
The molten salt reactor(MSR) has received much recent attention. The presence of beryllium and the mixing of actinides with light nuclei in the fuel salt result in a relatively strong neutron source that can affect th...The molten salt reactor(MSR) has received much recent attention. The presence of beryllium and the mixing of actinides with light nuclei in the fuel salt result in a relatively strong neutron source that can affect the surveillance at subcritical and transient characteristics during operation. In this study, we predict the inherent neutron sources based on a MSR model. The calculation shows that in the fresh core, the inherent neutron sources are mainly from alpha-induced neutrons. After power operation, the inherent neutron sources become remarkably stronger due to photoneutrons. Although being an insignificant part in the total neutron population during operation, the inherent neutron sources can be used as the installed neutron source after shutdown. If the MSR has continuously operated at full power(2 MWt) for 10 days,then there would be no need for the installed source within80 days after shutdown. After operating constantly for500 days, the installed neutron source can be eliminated within 2 years after shutdown.展开更多
阿尔及利亚比林核研究中心重水反应堆(Multi-purposes Heavy Water Research Reactor,MHWRR)实施了仪表、控制和电气数字化升级改造,改造后的首次临界启动对改造工程具有重要意义。为保证反应堆启动安全,需要解决升级改造后在极低光激...阿尔及利亚比林核研究中心重水反应堆(Multi-purposes Heavy Water Research Reactor,MHWRR)实施了仪表、控制和电气数字化升级改造,改造后的首次临界启动对改造工程具有重要意义。为保证反应堆启动安全,需要解决升级改造后在极低光激中子水平下临界启动中存在的核测量盲区问题,首先对长期停堆后堆内剩余光激中子源强、核测量盲区以及临界棒位进行了理论计算与分析研究,在此基础上提出了在无外加启动中子源条件下首次临界启动的实验技术方案。在无参考数据的情况下,实验进程完全按理论设计的预期进行,临界启动一次成功;启动过程中核功率参数得到有效监测,启动测量装置与堆外电离室测量范围衔接完备,临界棒位理论值与实验值的误差小于0.84%,实验结果与理论计算结果符合良好,表明了这项实验技术的合理可行。展开更多
From Sep. 3 of 2005 to Oct. 26, the HL-2A tokamak experiment carded out 42 days discharge operation, and successfully completed many experiments. These experiments include divertor operation, high density, molecular b...From Sep. 3 of 2005 to Oct. 26, the HL-2A tokamak experiment carded out 42 days discharge operation, and successfully completed many experiments. These experiments include divertor operation, high density, molecular beam injection, LHCD, siliconizafion. Experimental results create new records. The parameters achieved in that year were as follows: plasma current Ip = 320 kA, toroidal magnetic field BT=2.2 T, plasma density ne = 4.2×10^19 m^-3, plasma exist time tp = 1580 ms, plasma current plateau time is 1200 ms, electron temperature is 900 eV, ion temperature is 800 eV. To protect worker and public and assess neutron radiation level, we monitored neutron dose in radiation controlled area by the pulse neutron dose monitoring system, which was made by institude of high energy physics, chinese academy of sciences and southwestern institute of physics, china nation nuclear corporation ( CNNC ).展开更多
基金This work was supported by the National Key R&D Program of China(No.2022YFA1603300)the National Natural Science Foundation of China(Nos.U2230133)+2 种基金the Independent Research Project of the Key Laboratory of Plasma Physics,CAEP(No.JCKYS2021212009)the Open Fund of the Key Laboratory of Nuclear Data,CIAE(No.JCKY2022201C152)Hengyang Municipal Science and Technology Project(No.202150054076).
文摘Photoneutron cross-section(PNCS)data are important in various current and emerging applications.Although a few sophis-ticated methods have been developed,there is still an urgent need to study the PNCS data.In this study,we propose the extraction of PNCS distributions using a combination of gamma activation and reaction yield ratio methods.To verify the validity of the proposed extraction method,experiments for generating^(62,64)Cu and^(85m,87m)Sr isotopes via laser-induced pho-toneutron reactions were performed,and the reaction yields of these isotopes were obtained.Using the proposed extraction method,the PNCS distributions of^(63)Cu and^(86)Sr isotopes(leading to^(85m)Sr isotope production)were successfully extracted.These extracted PNCS distributions were benchmarked against available PNCS data or TALYS calculations,demonstrating the validity of the proposed extraction method.Potential applications for predicting the PNCS distributions of the 30 iso-topes are further introduced.We conclude that the proposed extraction method is an effective complement to the available sophisticated methods for measuring and evaluating PNCS data.
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences(No.XDA02010000)the Frontier Science Key Program of the Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)
文摘The solid-fueled thorium molten salt reactor(TMSR-SF1) is a 10 MW_(th) test reactor design to be deployed in 5-10 years by the TMSR group.Its design combines coated particle fuel and molten FLiBe coolant for great intrinsic safety features and economic advantages.Due to a large amount of beryllium in the coolant salt,photoneutrons are produced by(y,n) reaction,hence the increasing fraction of effective delayed neutrons in the core by the photoneutrons originating from the long-lived fission products.Some of the delayed photoneutron groups are of long lifetime,so a direct effect is resulted in the transient process and reactivity measurement.To study the impact of photoneutrons for TMSR-SF1,the effective photoneutron fraction is estimated using k-ratio method and performed by the Monte Carlo code(MCNP5) with ENDF/B-Ⅶ cross sections.Based on the coupled neutronphoton point kinetics equations,influence of the photoneutrons is analyzed.The results show that the impact of photoneutrons is not negligible in reactivity measurement.Without considering photoneutrons in on-line reactivity measurement based on inverse point kinetics can result in overestimation of the positive reactivity and underestimation of the negative reactivity.The photoneutrons also lead to more waiting time for the doubling time measurement.Since the photoneutron precursors take extremely long time to achieve equilibrium,a "steady" power operation may not directly imply a "real" criticality.
基金supported by the National Natural Science Foundation of China(Nos.11905018 and 11875328).
文摘This work is an attempt to improve the Bayesian neural network (BNN) for studying photoneutron yield cross sections as a function of the charge number Z, mass number A, and incident energy ε. The BNN was improved in terms of three aspects:numerical parameters, input layer, and network structure. First, by minimizing the deviations between the predictions and data, the numerical parameters, including the hidden layer number, hidden node number, and activation function, were selected. It was found that the BNN with three hidden layers, 10 hidden nodes, and sigmoid activation function provided the smallest deviations. Second, based on known knowledge,such as the isospin dependence and shape effect, the optimal ground-state properties were selected as input neurons. Third, the Lorentzian function was applied to map the hidden nodes to the output cross sections, and the empirical formula of the Lorentzian parameters was applied to link some of the input nodes to the output cross sections. It was found that the last two aspects improved the predictions and avoided overfitting, especially for the axially deformed nucleus.
基金Project supported by the National Natural Science Foundation of China (Grant No.10576006)the Foundation of China Academy of Engineering Physics (Grant Nos.2007A01001 and 2009B0202020)
文摘This paper reports on the results of calculations using a Monte Carlo code (MCNP5) to study the properties of photons, electrons and photoneutrons obtained in the converted target and their transportations in x-ray radiography. A comparison between measurements and calculations for bremsstrahlung and photoneutrons is presented. The radiographic rule and the effect of the collimator on the image are studied with the experimental model. The results provide exact parameters for the optimal design of radiographic layout and shielding systems.
基金This paper is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-14-1-0045The project was also supported by the NNSA coop-erative agreement DE-NA0002008the Defense Advanced Research Projects Agency's PULSE program(12-63-PULSE-FP014).
文摘Relativistic electron beams driven by laser wakefield acceleration were utilized to produce ultrashort neutron sources.The experiment was carried out on the 38 fs,~0.5 J,800 nm Ti:Sapphire laser in the 10 TW UT 3 laser lab at University of Texas at Austin.The target gas was a high density pulsed gas jet composed of 90%He and 10%N 2.The laser pulse with a peak intensity of 1.5×10^(18) W/cm^(2) interacted with the target to create a cylindrical plasma channel of 60 mm radius(FWHM)and 1.5 mm length(FWHM).Electron beams of~80 pC with the Gaussian energy distribution centered at 37 MeV and a width of 30 MeV(FWHM)were produced via laser wakefield acceleration.Neutron fluences of~2.4×10^(6) per shot with hundreds of ps temporal length were generated through bremsstrahlung and subsequent photoneutron reactions in a 26.6 mm thick tungsten converter.Results were compared with those of simulations using EPOCH and GEANT4,showing agreement in electron spectrum,neutron fluence,neutron angular distribution and conversion rate.
基金supported by Extreme Light Infrastructure-Nuclear Physics(ELI-NP)-Phase Ia project co-financed by the European Union through the European Regional Development Fund+1 种基金the National Natural Science Foundation of China(No.11405083)the Young Talent Project of the University of South China
文摘Copper-64 is a radioisotope of medical interest that could be used for positron emission tomography imaging and targeted radiotherapy of cancer. In this work,we investigated the possibility of producing the^(64)Cu isotope through a^(65)Cu(γ,n) reaction using high-intensity γ-beams produced at the Extreme Light InfrastructureNuclear Physics facility(ELI-NP). The specific activity for^(64)Cu was obtained as a function of target geometry, irradiation time, and electron beam energy, which translates into γ-beam energy. Optimized conditions for the generation of^(64)Cu isotopes at the ELI-NP were discussed. We estimated that an achievable saturation specific activity is of the order of 1–2 m Ci/g for thin targets(radius 1–2 mm,thickness 1 cm) and for a γ-beam flux of 10^(11) s ~1. Based on these results, the ELI-NP could provide great potential for the production of some innovative radioisotopes of medical interest in sufficient quantities suitable for nuclear medicine research.
文摘Photoneutrons, emitted by means of photonuclear interactions when gas bremsstrahlung interacts with beamline components, can be another potential radiation source needed to be considered for shielding design and dose assessment of beamline. In this paper, simulations and measurements of photoneutrons dose rate at beamline BL09 U are carried out when Shanghai Synchrotron Radiation Facility(SSRF) running at Top-up mode(3.5 GeV, 235 mA). A geometry model is constructed for the beamline BL09 U with considerations of the scattering process of the major optical components. The model is compiled into Monte Carlo simulation code FLUKA to calculate photoneutron dose distribution. Measurements of the photoneutrons dose rate were performed by using Environmental Neutron Monitor(ENM). Observation points were arranged uniformly along the inside and outside of the optical enclosure(OE) of BL09 U. The calculation results agree with experiments within the measurements uncertainties. It is verified that photoneutrons dose simulation is reliable. The simulation and measurement methods can be applied to evaluate the neutron dose level of other beamline stations, and provide references for the shielding design of the beamlines at SSRF in the near future.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)
文摘The 10 MW_(th) solid-fueled thorium molten salt reactor(TMSR-SF1) is a FLi Be salt-cooled pebble bed reactor to be deployed in 5–10 years, designed by the TMSR group. Due to a large amount of beryllium in the core, the photoneutrons are produced via(γ , n) reactions.Some of them are generated a long time after the fission event and therefore are considered as delayed neutrons. In this paper, we redefine the effective delayed neutrons into two fractions: the delayed fission neutron fraction and the delayed photoneutron fraction. With some reasonable assumptions, the inner product method and the k-ratio method are adopted for studying the effective delayed photoneutron fraction. In the k-ratio method, the Monte Carlo code MCNP6 is used to evaluate the effective photoneutron fraction as the ratio between the multiplication factors with and without contribution of the delayed neutrons and photoneutrons. In the inner product method, with the Monte Carlo and deterministic codes together, we use the adjoint neutron flux as a weighting function for the neutrons and photoneutrons generated in the core. Results of the two methods agree well with each other, but the k-ratio method requires much more computing time for the same precision.
文摘Bremsstrahlung photon beams produced by medical linear accelerators are currently the most commonly used method of radiation therapy for cancerous tumors. Photons with energies greater than 8-10 MeV potentially generate neutrons through photonuclear interactions in the accelerator's treatment head, patient's body, and treat- ment room ambient. Electrons impinging on a heavy target generate a cascade shower of bremsstrahlung photons, the energy spectrum of which shows an end point equal to the electron beam energy. By varying the target thickness, an optimum thickness exists for which, at the given electron energy, maximum photon flux is achievable. If a source of high-energy photons i.e. bremsstrahlung, is conveniently directed to a suitable D20 target, a novel approach for production of an acceptable flux of filterable photoneturons for boron neutron capture therapy (BNCT) application is possible. This study consists of two parts. 1. Comparison and assessment of deuterium photonuclear cross section data. 2. Evaluation of the heavy water photonuclear source.
文摘Purpose High-energy electron linear accelerators(LINACs)have a wide use in radiotherapy.The photoneutron production in medical linear accelerators,when operating at energies greater than 10 MeV,is an important subject to consider in patient’s treatment procedures.In this work,we simulate a typical LINAC to calculate photoneutron dose and flux in radiotherapy room.Methods The latest version of MCNPX Monte Carlo code along with MCNP visual editor has been used to simulate the LINAC and its components.Photoneutron production has been successfully simulated by selecting appropriate physics card and parameters.Dose and flux of produced photoneutrons have been calculated by using mesh tally function.Results Production of photoneutrons in LINAC head and its components have been successfully simulated by using MCNPX code.MCNP visual editor has been used to track the particles.Photoneutron dose and flux have been calculated using mesh tally function,with good results of statistical tests.Conclusion The photoneutron production has been successfully simulated and benchmarked.The proposed simulation code is able to calculate photoneutron dose and flux.According to photoneutron production cross sections,the appropriate parameters have been selected to reduce the run-time of simulation code.
基金supported by the National Natural Science Foundation of China (Nos.12275338,12005280,11905274 and 11875311)the Key Laboratory of Nuclear Data foundation (JCKY2022201C152)+1 种基金National key research and development program (No.2022YFA1602404)the Strategic Priority Research Program of the CAS (No.XDB34030000).
文摘The Shanghai laser electron gamma source(SLEGS)is a powerful tool for exploring photonuclear physics,such as giant dipole resonance(GDR)and pygmy dipole resonance,which are the main mechanisms of collective nuclear motion.The goal of the SLEGS neutron time-of-flight(TOF)spectrometer is to measure GDR and specific nuclear structures in the energy region above the neutron threshold.The SLEGS TOF spectrometer was designed to hold 20 sets of EJ301 and LaBr3 detectors.Geant4 was used to simulate the efficiency of each detector and the entire spectrometer,which provides a reference for the selection of detectors and layout of the SLEGS TOF spectrometer.Under the events of 208Pb,implementations of coincidence and time-of-flight technology for complex experiments are available;thus,and neutron decay events can be separated.The performance of SLEGS TOF spectrometer was systematically evaluated using offline experiments,in which the time resolution reached approximately 0.9 ns.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project under Grant No.XDA02010000
文摘The molten salt reactor(MSR) has received much recent attention. The presence of beryllium and the mixing of actinides with light nuclei in the fuel salt result in a relatively strong neutron source that can affect the surveillance at subcritical and transient characteristics during operation. In this study, we predict the inherent neutron sources based on a MSR model. The calculation shows that in the fresh core, the inherent neutron sources are mainly from alpha-induced neutrons. After power operation, the inherent neutron sources become remarkably stronger due to photoneutrons. Although being an insignificant part in the total neutron population during operation, the inherent neutron sources can be used as the installed neutron source after shutdown. If the MSR has continuously operated at full power(2 MWt) for 10 days,then there would be no need for the installed source within80 days after shutdown. After operating constantly for500 days, the installed neutron source can be eliminated within 2 years after shutdown.
文摘阿尔及利亚比林核研究中心重水反应堆(Multi-purposes Heavy Water Research Reactor,MHWRR)实施了仪表、控制和电气数字化升级改造,改造后的首次临界启动对改造工程具有重要意义。为保证反应堆启动安全,需要解决升级改造后在极低光激中子水平下临界启动中存在的核测量盲区问题,首先对长期停堆后堆内剩余光激中子源强、核测量盲区以及临界棒位进行了理论计算与分析研究,在此基础上提出了在无外加启动中子源条件下首次临界启动的实验技术方案。在无参考数据的情况下,实验进程完全按理论设计的预期进行,临界启动一次成功;启动过程中核功率参数得到有效监测,启动测量装置与堆外电离室测量范围衔接完备,临界棒位理论值与实验值的误差小于0.84%,实验结果与理论计算结果符合良好,表明了这项实验技术的合理可行。
文摘From Sep. 3 of 2005 to Oct. 26, the HL-2A tokamak experiment carded out 42 days discharge operation, and successfully completed many experiments. These experiments include divertor operation, high density, molecular beam injection, LHCD, siliconizafion. Experimental results create new records. The parameters achieved in that year were as follows: plasma current Ip = 320 kA, toroidal magnetic field BT=2.2 T, plasma density ne = 4.2×10^19 m^-3, plasma exist time tp = 1580 ms, plasma current plateau time is 1200 ms, electron temperature is 900 eV, ion temperature is 800 eV. To protect worker and public and assess neutron radiation level, we monitored neutron dose in radiation controlled area by the pulse neutron dose monitoring system, which was made by institude of high energy physics, chinese academy of sciences and southwestern institute of physics, china nation nuclear corporation ( CNNC ).