Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic c...Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic crystals for TE and TM waves are different from the two-dimensional conventional photonic crystals. Some absolute band gaps and semiDirac points are found. When the medium column radius and the function form of the dielectric constant are modulated, the numbers, width, and position of band gaps are changed, and the semi-Dirac point can either occur or disappear. Therefore,the special band gaps structures and semi-Dirac points can be achieved through the modulation on the two-dimensional function photonic crystals. The results will provide a new design method of optical devices based on the two-dimensional function photonic crystals.展开更多
Transmission spectra of coupled cavity structures (CCSs) in two-dimensional (2D) photonic crystals (PCs) are investigated using a coupled mode theory, and an optical filter based on CCS is proposed. The performa...Transmission spectra of coupled cavity structures (CCSs) in two-dimensional (2D) photonic crystals (PCs) are investigated using a coupled mode theory, and an optical filter based on CCS is proposed. The performance of the filter is investigated using finite-difference time-domain (FDTD) method, and the results show that within a very short coupling distance of about 3λ, where ), is the wavelength of signal in vacuum, the incident signals with different frequencies are separated into different channels with a contrast ratio of 20 dB. The advantages of this kind of filter are small size and easily tunable operation frequencies.展开更多
The complex band structures of a 1D anisotropic graphene photonic crystal are investigated, and the dispersion relations are confirmed using the transfer matrix method and simulation of commercial software. It is foun...The complex band structures of a 1D anisotropic graphene photonic crystal are investigated, and the dispersion relations are confirmed using the transfer matrix method and simulation of commercial software. It is found that the result of using effective medium theory can fit the derived dispersion curves in the low wave vector.Transmission, absorption, and reflection at oblique incident angles are studied for the structure, respectively.Omni-gaps exist for angles as high as 80° for two polarizations. Physical mechanisms of the tunable dispersion and transmission are explained by the permittivity of graphene and the effective permittivity of the multilayerstructure.展开更多
A facile, convenient and flexible method to tune the structural color of the colloidal magnetically assembled photonic crystals(CMA-PCs) was proposed. The mechanism to tune structural color could be attributed to th...A facile, convenient and flexible method to tune the structural color of the colloidal magnetically assembled photonic crystals(CMA-PCs) was proposed. The mechanism to tune structural color could be attributed to the significant influence of the surfactant sodium dodecyl sulfate(SDS) concentration on the particle size, especially on the magnetite content of the superparamagnetic composite nanoparticles(MCNPs). By adjusting SDS concentra- tion in miniemulsion polymerization of MCNPs, CMA-PCs with desired diffraction colors could be obtained.展开更多
A novel simple dose-compensation method is developed for proximity effect correction in electron-beam lithography.The sizes of exposed patterns depend on dose factors while other exposure parameters(including acceler...A novel simple dose-compensation method is developed for proximity effect correction in electron-beam lithography.The sizes of exposed patterns depend on dose factors while other exposure parameters(including accelerate voltage,resist thickness,exposing step size,substrate material,and so on) remain constant.This method is based on two reasonable assumptions in the evaluation of the compensated dose factor:one is that the relation between dose factors and circle-diameters is linear in the range under consideration;the other is that the compensated dose factor is only affected by the nearest neighbors for simplicity.Four-layer-hexagon photonic crystal structures were fabricated as test patterns to demonstrate this method.Compared to the uncorrected structures,the homogeneity of the corrected hole-size in photonic crystal structures was clearly improved.展开更多
基金Project supported by the National Natural Science Foundations of China(Grant No.61275047)the Research Project of Chinese Ministry of Education(Grant No.213009A)the Scientific and Technological Development Foundation of Jilin Province,China(Grant No.20130101031JC)
文摘Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic crystals for TE and TM waves are different from the two-dimensional conventional photonic crystals. Some absolute band gaps and semiDirac points are found. When the medium column radius and the function form of the dielectric constant are modulated, the numbers, width, and position of band gaps are changed, and the semi-Dirac point can either occur or disappear. Therefore,the special band gaps structures and semi-Dirac points can be achieved through the modulation on the two-dimensional function photonic crystals. The results will provide a new design method of optical devices based on the two-dimensional function photonic crystals.
文摘Transmission spectra of coupled cavity structures (CCSs) in two-dimensional (2D) photonic crystals (PCs) are investigated using a coupled mode theory, and an optical filter based on CCS is proposed. The performance of the filter is investigated using finite-difference time-domain (FDTD) method, and the results show that within a very short coupling distance of about 3λ, where ), is the wavelength of signal in vacuum, the incident signals with different frequencies are separated into different channels with a contrast ratio of 20 dB. The advantages of this kind of filter are small size and easily tunable operation frequencies.
基金National Natural Science Foundation of China(NSFC)(61107030)Fundamental Research Funds for the Central Universities of ChinaOpening Foundation of the State Key Laboratory of Millimeter Waves(K201703)
文摘The complex band structures of a 1D anisotropic graphene photonic crystal are investigated, and the dispersion relations are confirmed using the transfer matrix method and simulation of commercial software. It is found that the result of using effective medium theory can fit the derived dispersion curves in the low wave vector.Transmission, absorption, and reflection at oblique incident angles are studied for the structure, respectively.Omni-gaps exist for angles as high as 80° for two polarizations. Physical mechanisms of the tunable dispersion and transmission are explained by the permittivity of graphene and the effective permittivity of the multilayerstructure.
基金Supported by the National Natural Science Foundation of China(Nos.21405133, 21774056).
文摘A facile, convenient and flexible method to tune the structural color of the colloidal magnetically assembled photonic crystals(CMA-PCs) was proposed. The mechanism to tune structural color could be attributed to the significant influence of the surfactant sodium dodecyl sulfate(SDS) concentration on the particle size, especially on the magnetite content of the superparamagnetic composite nanoparticles(MCNPs). By adjusting SDS concentra- tion in miniemulsion polymerization of MCNPs, CMA-PCs with desired diffraction colors could be obtained.
基金Project supported by the National Natural Science Foundation of China(Nos.60506017,60776059)the National High Technology Research and Development Program of China(No.2007AA03Z303).
文摘A novel simple dose-compensation method is developed for proximity effect correction in electron-beam lithography.The sizes of exposed patterns depend on dose factors while other exposure parameters(including accelerate voltage,resist thickness,exposing step size,substrate material,and so on) remain constant.This method is based on two reasonable assumptions in the evaluation of the compensated dose factor:one is that the relation between dose factors and circle-diameters is linear in the range under consideration;the other is that the compensated dose factor is only affected by the nearest neighbors for simplicity.Four-layer-hexagon photonic crystal structures were fabricated as test patterns to demonstrate this method.Compared to the uncorrected structures,the homogeneity of the corrected hole-size in photonic crystal structures was clearly improved.