Ultrashort pulses complicate the frequency conversion in a nonlinear crystal, where group velocity mismatch becomes the main obstacle due to dispersion. We present a design for group velocity compensated second harmon...Ultrashort pulses complicate the frequency conversion in a nonlinear crystal, where group velocity mismatch becomes the main obstacle due to dispersion. We present a design for group velocity compensated second harmonic generation in a modulated nonlinear structure, embedded in a liquid crystal box. In this structure, nonlinear crystals act as sources of signal and liquid crystals compensate for group velocity mismatch originating from nonlinear crystals. There are the advantages of the flexible, controllable birefringence of liquid crystals. Meanwhile, a method calculating the parameters of this type of structure is presented. To make it clear, an example is provided. Furthermore, the structure can also be shaped as a waveguide to support integration into other optical devices, applicable to all-optical processing systems.展开更多
Integrated photonics is attracting considerable attention and has found many applications in both classical and quantum optics,fulfilling the requirements for the ever-growing complexity in modern optical experiments ...Integrated photonics is attracting considerable attention and has found many applications in both classical and quantum optics,fulfilling the requirements for the ever-growing complexity in modern optical experiments and big data communication.Femtosecond(fs)laser direct writing(FLDW)is an acknowledged technique for producing waveguides(WGs)in transparent glass that have been used to construct complex integrated photonic devices.FLDW possesses unique features,such as three-dimensional fabrication geometry,rapid prototyping,and single step fabrication,which are important for integrated communication devices and quantum photonic and astrophotonic technologies.To fully take advantage of FLDW,considerable efforts have been made to produce WGs over a large depth with low propagation loss,coupling loss,bend loss,and highly symmetrical mode field.We summarize the improved techniques as well as the mechanisms for writing high-performance WGs with controllable morphology of cross-section,highly symmetrical mode field,low loss,and high processing uniformity and efficiency,and discuss the recent progress of WGs in photonic integrated devices for communication,topological physics,quantum information processing,and astrophotonics.Prospective challenges and future research directions in this field are also pointed out.展开更多
We review the state of the art and our perspectives on silicon and hybrid silicon photonic devices for optical interconnects in datacenters. After a brief discussion of the key requirements for intra-datacenter optica...We review the state of the art and our perspectives on silicon and hybrid silicon photonic devices for optical interconnects in datacenters. After a brief discussion of the key requirements for intra-datacenter optical interconnects, we propose a wavelength-division-multiplexing(WDM)-based optical interconnect for intra-datacenter applications. Following our proposed interconnects configuration, the bulk of the review emphasizes recent developments concerning on-chip hybrid silicon microlasers and WDM transmitters, and silicon photonic switch fabrics for intra-datacenters. For hybrid silicon microlasers and WDM transmitters, we outline the remaining challenges and key issues toward realizing low power consumption, direct modulation, and integration of multiwavelength microlaser arrays. For silicon photonic switch fabrics, we review various topologies and configurations of high-port-count N-by-N switch fabrics using Mach–Zehnder interferometers and microring resonators as switch elements, and discuss their prospects toward practical implementations with active reconfiguration.For the microring-based switch fabrics, we review recent developments of active stabilization schemes at the subsystem level. Last, we outline several large challenges and problems for silicon and hybrid silicon photonics to meet for intra-datacenter applications and propose potential solutions.展开更多
We review current silicon photonic devices and their performance in connection with energy consumption.Four critical issues are identified to lower energy consumption in devices and systems: reducing the influence of ...We review current silicon photonic devices and their performance in connection with energy consumption.Four critical issues are identified to lower energy consumption in devices and systems: reducing the influence of the thermo-optic effect, increasing the wall-plug efficiency of lasers on silicon, optimizing energy performance of modulators, and enhancing the sensitivity of photodetectors. Major conclusions are(1) Mach–Zehnder interferometer-based devices can achieve athermal performance without any extra energy consumption while microrings do not have an efficient passive athermal solution;(2) while direct bonded III–V-based Si lasers can meet system power requirement for now, hetero-epitaxial grown III–V quantum dot lasers are competitive and may be a better option for the future;(3) resonant modulators, especially coupling modulators, are promising for low-energy consumption operation even when the power to stabilize their operation is included;(4) benefiting from high sensitivity and low cost, Ge/Si avalanche photodiode is the most promising photodetector and can be used to effectively reduce the optical link power budget. These analyses and solutions will contribute to further lowering energy consumption to meet aggressive energy demands in future systems.展开更多
Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to p...Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to possess both the saturable absorption effect and large nonlinear refractive index. Herein, taking advantage of the unique nonlinear optical properties of MoS2, we fabricated a highly nonlinear saturable absorption photonic device by depositing the few-layer MoS2 onto the microfiber. With the proposed MoS2 photonic device, apart from the conventional soliton patterns, the mode-locked pulses could be shaped into some new soliton patterns, namely,multiple soliton molecules, localized chaotic multipulses, and double-scale soliton clusters. Our findings indicate that the few-layer MoS2-deposited microfiber could operate as a promising highlynonlinear photonic device for the related nonlinear optics applications.展开更多
As the typical material of two-dimensional transition metal dichalcogenides(TMDs), few-layered MoS2 possesses broadband saturable absorption and a large nonlinear refractive index, which could be regarded as a promi...As the typical material of two-dimensional transition metal dichalcogenides(TMDs), few-layered MoS2 possesses broadband saturable absorption and a large nonlinear refractive index, which could be regarded as a promising candidate for dual-function photonic device fabrication. In this work, the coexistence of a bound soliton and harmonic mode-locking soliton was demonstrated in an ultrafast fiber laser based on a MoS2-deposited microfiber photonic device. Through a band-pass filter, each multi-soliton state was investigated separately. The bound soliton has periodic spectral modulation of 1.55 nm with a corresponding pulse separation of 5.16 ps.The harmonic mode-locking soliton has the repetition rate of 479 MHz, corresponding to the 65th harmonic of the fundamental repetition rate. The results indicated that there exist more possibilities of different multi-soliton composites, which would enhance our understanding of multi-soliton dynamics.展开更多
Superhydrophobic surface(SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them...Superhydrophobic surface(SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them to retain spherical shapes, and the low adhesion of SHS facilitates easy droplet collection when tilting the substrate. These characteristics make SHS suitable for a wide range of applications. One particularly promising application is the fabrication of microsphere and supraparticle materials. SHS offers a distinct advantage as a universal platform capable of providing customized services for a variety of microspheres and supraparticles. In this review, an overview of the strategies for fabricating microspheres and supraparticles with the aid of SHS, including cross-linking process, polymer melting,and droplet template evaporation methods, is first presented. Then, the applications of microspheres and supraparticles formed onto SHS are discussed in detail, for example, fabricating photonic devices with controllable structures and tunable structural colors, acting as catalysts with emerging or synergetic properties, being integrated into the biomedical field to construct the devices with different medicinal purposes, being utilized for inducing protein crystallization and detecting trace amounts of analytes. Finally,the perspective on future developments involved with this research field is given, along with some obstacles and opportunities.展开更多
Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challeng...Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challenge, we have designed an on-chip TE0–TE1mode converter based on topologically protected waveguide arrays. The simulation results demonstrate that the converter exhibits a mode coupling efficiency of 93.5% near 1550 nm and can tolerate a relative fabrication error of 30%. Our design approach can be extended to enhance the robustness for other integrated photonic devices, beneficial for future development of optical network systems.展开更多
Systemic blood circulation is one of life activity’s most important physiological functions.Continuous noninvasive hemodynamicmonitoring is essential for the management of cardiovascular status.However,it is difficul...Systemic blood circulation is one of life activity’s most important physiological functions.Continuous noninvasive hemodynamicmonitoring is essential for the management of cardiovascular status.However,it is difficult to achieve systemichemodynamic monitoring with the daily use of current devices due to the lack of multichannel and time-synchronized operationcapability over the whole body.Here,we utilize a soft microfiber Bragg grating group to monitor spatiotemporalhemodynamics by taking advantage of the high sensitivity,electromagnetic immunity,and great temporal synchronizationbetween multiple remote sensor nodes.A continuous systemic hemodynamic measurement technique is developedusing all-mechanical physiological signals,such as ballistocardiogram signals and pulse waves,to illustrate the actualmechanical process of blood circulation.Multiple hemodynamic parameters,such as systemic pulse transit time,heartrate,blood pressure,and peripheral resistance,are monitored using skin-like microfiber Bragg grating patches conformallyattached at different body locations.Relying on the soft microfiber Bragg grating group,the spatiotemporal hemodynamicmonitoring technique opens up new possibilities in clinical medical diagnosis and daily health management.展开更多
The passive radiative cooling technology shows a great potential application on reducing the enormous global energy consumption.The multilayer metamaterials could enhance the radiative cooling performance.However,it i...The passive radiative cooling technology shows a great potential application on reducing the enormous global energy consumption.The multilayer metamaterials could enhance the radiative cooling performance.However,it is a challenge to design the radiative cooler.In this work,based on the particle swarm optimization(PSO)evolutionary algorithm,we develop an intelligent workflow in designing photonic radiative cooling metamaterials.Specifically,we design two 10-layer SiO_(2) radiative coolers doped by cylindrical MgF_(2) or air impurities,possessing high emissivity within the selective(8–13μm)and broadband(8–25μm)atmospheric transparency windows,respectively.Our two kinds of coolers demonstrate power density as high as 119 W/m^(2) and 132 W/m^(2) at the room temperature(300 K).Our scheme does not rely on the usage of special materials,forming high-performing metamaterials with conventional poor-performing components.This significant improvement of the emission spectra proves the effectiveness of our inverse design algorithm in boosting the discovery of high-performing functional metamaterials.展开更多
Optical waveguides are far more than mere connecting elements in integrated optical systems and circuits.Benefiting from their high optical confinement and miniaturized footprints,waveguide structures established base...Optical waveguides are far more than mere connecting elements in integrated optical systems and circuits.Benefiting from their high optical confinement and miniaturized footprints,waveguide structures established based on crystalline materials,particularly,are opening exciting possibilities and opportunities in photonic chips by facilitating their on-chip integration with different functionalities and highly compact photonic circuits.Femtosecond-laser-direct writing(FsLDW),as a true three-dimensional(3D)micromachining and microfabrication technology,allows rapid prototyping of on-demand waveguide geometries inside transparent materials via localized material modification.The success of FsLDW lies not only in its unsurpassed aptitude for realizing 3D devices but also in its remarkable material-independence that enables cross-platform solutions.This review emphasizes FsLDW fabrication of waveguide structures with 3D layouts in dielectric crystals.Their functionalities as passive and active photonic devices are also demonstrated and discussed.展开更多
A modified wide-angle beam propagation based on the Douglas operators is presented.The truncation error in the modified wide-angle beam propagation is reduced to o (Δ x ) 4 in the transverse direction nearly wi...A modified wide-angle beam propagation based on the Douglas operators is presented.The truncation error in the modified wide-angle beam propagation is reduced to o (Δ x ) 4 in the transverse direction nearly without any increase of the computation time,whereas the error in the ordinary wide-angle beam propagation method is typically o (Δ x ) 2.With trivial programming changes,the accuracy is higher,especially in wide-angle propagation.展开更多
Ultrafast lasers play an important role in a variety of applications ranging from optical communications to medical diagnostics and industrial materials processing. Graphene and other two-dimensional(2D) noncarbon m...Ultrafast lasers play an important role in a variety of applications ranging from optical communications to medical diagnostics and industrial materials processing. Graphene and other two-dimensional(2D) noncarbon materials, including topological insulators(TIs), transition metal dichalcogenides(TMDCs), phosphorene, bismuthene, and antimonene, have witnessed a very fast development of both fundamental and practical aspects in ultrafast photonics since 2009. Their unique nonlinear optical properties enable them to be used as excellent saturable absorbers(SAs) that have fast responses and broadband operation, and can be easily integrated into lasers. Here, we catalog and review recent progress in the exploitation of these 2D noncarbon materials in this emerging field. The fabrication techniques, nonlinear optical properties, and device integration strategies of 2D noncarbon materials are first introduced with a comprehensive view. Then, various mode-locked/Q-switched lasers(e.g., fiber, solid-state, disk, and waveguide lasers) based on 2D noncarbon materials are reviewed. In addition, versatile soliton pulses generated from the mode-locked fiber lasers based on 2D noncarbon materials are also summarized. Finally, future challenges and perspectives of 2D materials-based lasers are addressed.展开更多
Remarkable progresses have been made in developing special polymer optical fibres and devices for photonic applications in recent years. This presentation will mainly report on the development of electro-optic, photos...Remarkable progresses have been made in developing special polymer optical fibres and devices for photonic applications in recent years. This presentation will mainly report on the development of electro-optic, photosensitive and photorefractive polymer optical fibres and related devices.展开更多
In this paper, we design and fabricate a silicon integrated optical filter consisting of two cascaded micro-ring resonators and two straight waveguides. Two micro-heaters are fabricated on the top of two micro-rings r...In this paper, we design and fabricate a silicon integrated optical filter consisting of two cascaded micro-ring resonators and two straight waveguides. Two micro-heaters are fabricated on the top of two micro-rings respectively, which are employed to modulate the micro-rings to perform the function of a tunable optical filter by the thermo–optic effect. The static response test indicates that the extinction ratio and 3-d B bandwidth are 29.01 d B and 0.21 nm respectively, the dynamic response test indicates that the 10%–90% rise and 90%–10% fall time of the filter are 16 μs and 12 μs, respectively,which can meet the requirements of optical communication and information processing. Finally, the power consumption of the device is also characterized, and the total power consumption is about 9.43 m W/nm, which has been improved efficiently.展开更多
We propose an ultra-wideband optical diode device based on two-dimensional square-lattice photonic crystals. For the device, the odd mode is completely transmitted in one direction and converted to the fundamental eve...We propose an ultra-wideband optical diode device based on two-dimensional square-lattice photonic crystals. For the device, the odd mode is completely transmitted in one direction and converted to the fundamental even mode, but completely reflected in the other direction. The operation bandwidth of the device is preserved within a rather wide range of frequencies, which is over 6.5% of the central frequency. A directional coupler and 90° bend are utilized as the composite function device with mode filter and mode converter. It is possible that the photonic crystal device can help to construct on-chip optical logical devices and benefit greatly to the optical systems with multiple spatial modes.展开更多
A compact multimode interference (MMI) splitter with silicon photonic nanowires on silicon-on-insulator (SOI) substrate is designed and fabricated. The footprint of the MMI section is only approximately 3×10...A compact multimode interference (MMI) splitter with silicon photonic nanowires on silicon-on-insulator (SOI) substrate is designed and fabricated. The footprint of the MMI section is only approximately 3×10 (μm). The simulation results show that the device may have a low excess loss of 0.04 dB. The transmission loss of the silicon photonics wire is measured to be 0.73±0.3 dB/mm. The compact size and low transmission loss allow the device to be used in ultra-compact photonic integrated circuits. The device exhibits a good light splitting function. In a spectral range of 1549-1560 nm, the excess loss is 1.5 dB and the average imbalance between the two channels is 0.51 dB.展开更多
Low dimensional silicon, where quantum size effects play significant roles, enables silicon with new photonic functionalities. In this short review, we discuss the way that silicon nanocrystals are produced, their opt...Low dimensional silicon, where quantum size effects play significant roles, enables silicon with new photonic functionalities. In this short review, we discuss the way that silicon nanocrystals are produced, their optoelectronic properties and a few device applications. We demonstrate that low dimensional silicon is an optimum material for developing silicon photonics.展开更多
During the past decades,atomically thin,two-dimensional(2D)layered materials have attracted tremen-dous research interest on both fundamental properties and practical applications because of their extraordinary mech...During the past decades,atomically thin,two-dimensional(2D)layered materials have attracted tremen-dous research interest on both fundamental properties and practical applications because of their extraordinary mechanical,thermal,electrical and optical properties,which are distinct from their counterparts in the bulk format.Various fabrication methods,such as soft-lithography,screen-printing,colloidal-templating and chemical/dry etching have been developed to fabricate micro/ nanostructures in 2D materials.Direct laser fabrication with the advantages of unique three-dimensional(3D)processing capability,arbitrary-shape designability and high fabrication accuracy up to tens of nanometers,which is far beyond the optical diffraction limit,has been widely studied and applied in the fabrication of various micro/ nanostructures of 2D materials for functional devices.This timely review summarizes the laser-matter interaction on 2D materials and the significant advances on laser-assisted 2D materials fabrication toward diverse functional photonics,optoelectronics,and electrochemical energy storage devices.The perspectives and challenges in designing and improving laser fabricated 2D materials devices are discussed as well.展开更多
基金Supported by the Natural Science Foundation of Heilongjiang Province under Grant Nos F201312,F2016023 and QC2015086the National Natural Science Foundation of China under Grant No 61405049
文摘Ultrashort pulses complicate the frequency conversion in a nonlinear crystal, where group velocity mismatch becomes the main obstacle due to dispersion. We present a design for group velocity compensated second harmonic generation in a modulated nonlinear structure, embedded in a liquid crystal box. In this structure, nonlinear crystals act as sources of signal and liquid crystals compensate for group velocity mismatch originating from nonlinear crystals. There are the advantages of the flexible, controllable birefringence of liquid crystals. Meanwhile, a method calculating the parameters of this type of structure is presented. To make it clear, an example is provided. Furthermore, the structure can also be shaped as a waveguide to support integration into other optical devices, applicable to all-optical processing systems.
基金This work was financially supported by the National Key R&D Program of China(2020YFB1805900)the National Natural Science Foundation of China(U20A20211,51902286,61775192,61905215,and 51772270)Open Funds of the State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,and the Fundamental Research Funds for the Central Universities.The authors declare no competing financial interest.
文摘Integrated photonics is attracting considerable attention and has found many applications in both classical and quantum optics,fulfilling the requirements for the ever-growing complexity in modern optical experiments and big data communication.Femtosecond(fs)laser direct writing(FLDW)is an acknowledged technique for producing waveguides(WGs)in transparent glass that have been used to construct complex integrated photonic devices.FLDW possesses unique features,such as three-dimensional fabrication geometry,rapid prototyping,and single step fabrication,which are important for integrated communication devices and quantum photonic and astrophotonic technologies.To fully take advantage of FLDW,considerable efforts have been made to produce WGs over a large depth with low propagation loss,coupling loss,bend loss,and highly symmetrical mode field.We summarize the improved techniques as well as the mechanisms for writing high-performance WGs with controllable morphology of cross-section,highly symmetrical mode field,low loss,and high processing uniformity and efficiency,and discuss the recent progress of WGs in photonic integrated devices for communication,topological physics,quantum information processing,and astrophotonics.Prospective challenges and future research directions in this field are also pointed out.
基金financial support from the National Science Foundation of China (NSFC)the Research Grants Council (RGC) of the Hong Kong Special Administrative Region (HKSAR) under project N_HKUST606/10+5 种基金the State Key Laboratory on Integrated Optoelectronics, ChinaOpen Fund of the State Key Laboratory on Integrated Optoelectronics under project IOSKL2013KF04the Innovation and Technology Fund (ITF) of the HKSAR under project ITS/023/14 and ITS/087/13the Proof-of-Concept Fund (PCF) of The Hong Kong University of Science and Technology (HKUST) under project no. PCF007.12/13the General Research Fund (GRF) of the HKSAR under project no. 16208114postdoctoral fellowship support from the Hong Kong Scholars Program 2013
文摘We review the state of the art and our perspectives on silicon and hybrid silicon photonic devices for optical interconnects in datacenters. After a brief discussion of the key requirements for intra-datacenter optical interconnects, we propose a wavelength-division-multiplexing(WDM)-based optical interconnect for intra-datacenter applications. Following our proposed interconnects configuration, the bulk of the review emphasizes recent developments concerning on-chip hybrid silicon microlasers and WDM transmitters, and silicon photonic switch fabrics for intra-datacenters. For hybrid silicon microlasers and WDM transmitters, we outline the remaining challenges and key issues toward realizing low power consumption, direct modulation, and integration of multiwavelength microlaser arrays. For silicon photonic switch fabrics, we review various topologies and configurations of high-port-count N-by-N switch fabrics using Mach–Zehnder interferometers and microring resonators as switch elements, and discuss their prospects toward practical implementations with active reconfiguration.For the microring-based switch fabrics, we review recent developments of active stabilization schemes at the subsystem level. Last, we outline several large challenges and problems for silicon and hybrid silicon photonics to meet for intra-datacenter applications and propose potential solutions.
基金supported by the Major International Cooperation and Exchange Program of the National Natural Science Foundation of China under Grant 61120106012
文摘We review current silicon photonic devices and their performance in connection with energy consumption.Four critical issues are identified to lower energy consumption in devices and systems: reducing the influence of the thermo-optic effect, increasing the wall-plug efficiency of lasers on silicon, optimizing energy performance of modulators, and enhancing the sensitivity of photodetectors. Major conclusions are(1) Mach–Zehnder interferometer-based devices can achieve athermal performance without any extra energy consumption while microrings do not have an efficient passive athermal solution;(2) while direct bonded III–V-based Si lasers can meet system power requirement for now, hetero-epitaxial grown III–V quantum dot lasers are competitive and may be a better option for the future;(3) resonant modulators, especially coupling modulators, are promising for low-energy consumption operation even when the power to stabilize their operation is included;(4) benefiting from high sensitivity and low cost, Ge/Si avalanche photodiode is the most promising photodetector and can be used to effectively reduce the optical link power budget. These analyses and solutions will contribute to further lowering energy consumption to meet aggressive energy demands in future systems.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 11474108, 61378036, 61307058, 11304101, 11074078)the PhD Start-up Fund of Natural Science Foundation of Guangdong Province, China (Grant No. S2013040016320)+2 种基金the Scientific and Technological Innovation Project of Higher Education Institute, Guangdong, China (Grant No. 2013KJCX0051)the financial support from the Guangdong Natural Science Funds for Distinguished Young Scholarthe Zhujiang New-star Plan of Science & Technology in Guangzhou City (Grant No. 2014J2200008)
文摘Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to possess both the saturable absorption effect and large nonlinear refractive index. Herein, taking advantage of the unique nonlinear optical properties of MoS2, we fabricated a highly nonlinear saturable absorption photonic device by depositing the few-layer MoS2 onto the microfiber. With the proposed MoS2 photonic device, apart from the conventional soliton patterns, the mode-locked pulses could be shaped into some new soliton patterns, namely,multiple soliton molecules, localized chaotic multipulses, and double-scale soliton clusters. Our findings indicate that the few-layer MoS2-deposited microfiber could operate as a promising highlynonlinear photonic device for the related nonlinear optics applications.
基金partially supported by the National Natural Science Foundation of China(NSFC)(Nos.61307058,61378036,11304101,and 11474108)Guangdong Natural Science Funds for Distinguished Young Scholar(No.2014A030306019)+3 种基金Program for the Outstanding Innovative Young Talents of Guangdong Province(No.2014TQ01X220)Program for Outstanding Young Teachers in Guangdong Higher Education Institutes(No.YQ2015051)Science and Technology Project of Guangdong(No.2016B090925004)Science and Technology Program of Guangzhou(No.201607010245)
文摘As the typical material of two-dimensional transition metal dichalcogenides(TMDs), few-layered MoS2 possesses broadband saturable absorption and a large nonlinear refractive index, which could be regarded as a promising candidate for dual-function photonic device fabrication. In this work, the coexistence of a bound soliton and harmonic mode-locking soliton was demonstrated in an ultrafast fiber laser based on a MoS2-deposited microfiber photonic device. Through a band-pass filter, each multi-soliton state was investigated separately. The bound soliton has periodic spectral modulation of 1.55 nm with a corresponding pulse separation of 5.16 ps.The harmonic mode-locking soliton has the repetition rate of 479 MHz, corresponding to the 65th harmonic of the fundamental repetition rate. The results indicated that there exist more possibilities of different multi-soliton composites, which would enhance our understanding of multi-soliton dynamics.
基金the financial support from Shenzhen Science and Technology Program (JCYJ20210324142210027, X.D.)the National Natural Science Foundation of China (52103136, 22275028, U22A20153, 22102017, 22302033, and 52106194)+5 种基金the Sichuan Outstanding Young Scholars Foundation (2021JDJQ0013)Natural Science Foundation of Sichuan Province (2022NSFSC1271)Sichuan Science and Technology Program (2023JDRC0082)“Oncology Medical Engineering Innovation Foundation” project of University of Electronic Science and Technology of China and Sichuan Cancer Hospital (ZYGX2021YGCX009)“Medical and Industrial Cross Foundation” of University of Electronic Science and Technology of China and Sichuan Provincial People’s Hospital (ZYGX2021YGLH207)Shandong Key R&D grant (2022CXGC010509)。
文摘Superhydrophobic surface(SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them to retain spherical shapes, and the low adhesion of SHS facilitates easy droplet collection when tilting the substrate. These characteristics make SHS suitable for a wide range of applications. One particularly promising application is the fabrication of microsphere and supraparticle materials. SHS offers a distinct advantage as a universal platform capable of providing customized services for a variety of microspheres and supraparticles. In this review, an overview of the strategies for fabricating microspheres and supraparticles with the aid of SHS, including cross-linking process, polymer melting,and droplet template evaporation methods, is first presented. Then, the applications of microspheres and supraparticles formed onto SHS are discussed in detail, for example, fabricating photonic devices with controllable structures and tunable structural colors, acting as catalysts with emerging or synergetic properties, being integrated into the biomedical field to construct the devices with different medicinal purposes, being utilized for inducing protein crystallization and detecting trace amounts of analytes. Finally,the perspective on future developments involved with this research field is given, along with some obstacles and opportunities.
基金Project supported by the National Undergraduate Training Projects for Innovation and Entrepreneurship (Grant No. 5003182007)the National Natural Science Foundation of China (Grant No. 12074137)+1 种基金the National Key Research and Development Project of China (Grant No. 2021YFB2801903)the Natural Science Foundation from the Science,Technology,and Innovation Commission of Shenzhen Municipality (Grant No. JCYJ20220530161010023)。
文摘Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challenge, we have designed an on-chip TE0–TE1mode converter based on topologically protected waveguide arrays. The simulation results demonstrate that the converter exhibits a mode coupling efficiency of 93.5% near 1550 nm and can tolerate a relative fabrication error of 30%. Our design approach can be extended to enhance the robustness for other integrated photonic devices, beneficial for future development of optical network systems.
基金supported by the National Key R&D Program of China(2021YFA1401103)the National Natural Science Foundation of China(61925502 and 51772145).
文摘Systemic blood circulation is one of life activity’s most important physiological functions.Continuous noninvasive hemodynamicmonitoring is essential for the management of cardiovascular status.However,it is difficult to achieve systemichemodynamic monitoring with the daily use of current devices due to the lack of multichannel and time-synchronized operationcapability over the whole body.Here,we utilize a soft microfiber Bragg grating group to monitor spatiotemporalhemodynamics by taking advantage of the high sensitivity,electromagnetic immunity,and great temporal synchronizationbetween multiple remote sensor nodes.A continuous systemic hemodynamic measurement technique is developedusing all-mechanical physiological signals,such as ballistocardiogram signals and pulse waves,to illustrate the actualmechanical process of blood circulation.Multiple hemodynamic parameters,such as systemic pulse transit time,heartrate,blood pressure,and peripheral resistance,are monitored using skin-like microfiber Bragg grating patches conformallyattached at different body locations.Relying on the soft microfiber Bragg grating group,the spatiotemporal hemodynamicmonitoring technique opens up new possibilities in clinical medical diagnosis and daily health management.
基金the National Natural Science Foundation of China(Grant No.11935010)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology。
文摘The passive radiative cooling technology shows a great potential application on reducing the enormous global energy consumption.The multilayer metamaterials could enhance the radiative cooling performance.However,it is a challenge to design the radiative cooler.In this work,based on the particle swarm optimization(PSO)evolutionary algorithm,we develop an intelligent workflow in designing photonic radiative cooling metamaterials.Specifically,we design two 10-layer SiO_(2) radiative coolers doped by cylindrical MgF_(2) or air impurities,possessing high emissivity within the selective(8–13μm)and broadband(8–25μm)atmospheric transparency windows,respectively.Our two kinds of coolers demonstrate power density as high as 119 W/m^(2) and 132 W/m^(2) at the room temperature(300 K).Our scheme does not rely on the usage of special materials,forming high-performing metamaterials with conventional poor-performing components.This significant improvement of the emission spectra proves the effectiveness of our inverse design algorithm in boosting the discovery of high-performing functional metamaterials.
基金financial support from National Natural Science Foundation of China(No.61775120).
文摘Optical waveguides are far more than mere connecting elements in integrated optical systems and circuits.Benefiting from their high optical confinement and miniaturized footprints,waveguide structures established based on crystalline materials,particularly,are opening exciting possibilities and opportunities in photonic chips by facilitating their on-chip integration with different functionalities and highly compact photonic circuits.Femtosecond-laser-direct writing(FsLDW),as a true three-dimensional(3D)micromachining and microfabrication technology,allows rapid prototyping of on-demand waveguide geometries inside transparent materials via localized material modification.The success of FsLDW lies not only in its unsurpassed aptitude for realizing 3D devices but also in its remarkable material-independence that enables cross-platform solutions.This review emphasizes FsLDW fabrication of waveguide structures with 3D layouts in dielectric crystals.Their functionalities as passive and active photonic devices are also demonstrated and discussed.
文摘A modified wide-angle beam propagation based on the Douglas operators is presented.The truncation error in the modified wide-angle beam propagation is reduced to o (Δ x ) 4 in the transverse direction nearly without any increase of the computation time,whereas the error in the ordinary wide-angle beam propagation method is typically o (Δ x ) 2.With trivial programming changes,the accuracy is higher,especially in wide-angle propagation.
基金supported by the Program for Equipment Pre-research Field Funds(No.6140414040116CB01012)the National Natural Science Foundation of China(Nos.61575051 and 11704086)the 111 project of the Harbin Engineering University(No.B13015)
文摘Ultrafast lasers play an important role in a variety of applications ranging from optical communications to medical diagnostics and industrial materials processing. Graphene and other two-dimensional(2D) noncarbon materials, including topological insulators(TIs), transition metal dichalcogenides(TMDCs), phosphorene, bismuthene, and antimonene, have witnessed a very fast development of both fundamental and practical aspects in ultrafast photonics since 2009. Their unique nonlinear optical properties enable them to be used as excellent saturable absorbers(SAs) that have fast responses and broadband operation, and can be easily integrated into lasers. Here, we catalog and review recent progress in the exploitation of these 2D noncarbon materials in this emerging field. The fabrication techniques, nonlinear optical properties, and device integration strategies of 2D noncarbon materials are first introduced with a comprehensive view. Then, various mode-locked/Q-switched lasers(e.g., fiber, solid-state, disk, and waveguide lasers) based on 2D noncarbon materials are reviewed. In addition, versatile soliton pulses generated from the mode-locked fiber lasers based on 2D noncarbon materials are also summarized. Finally, future challenges and perspectives of 2D materials-based lasers are addressed.
文摘Remarkable progresses have been made in developing special polymer optical fibres and devices for photonic applications in recent years. This presentation will mainly report on the development of electro-optic, photosensitive and photorefractive polymer optical fibres and related devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.61405082)the Fundamental Research Funds for the Central Universities
文摘In this paper, we design and fabricate a silicon integrated optical filter consisting of two cascaded micro-ring resonators and two straight waveguides. Two micro-heaters are fabricated on the top of two micro-rings respectively, which are employed to modulate the micro-rings to perform the function of a tunable optical filter by the thermo–optic effect. The static response test indicates that the extinction ratio and 3-d B bandwidth are 29.01 d B and 0.21 nm respectively, the dynamic response test indicates that the 10%–90% rise and 90%–10% fall time of the filter are 16 μs and 12 μs, respectively,which can meet the requirements of optical communication and information processing. Finally, the power consumption of the device is also characterized, and the total power consumption is about 9.43 m W/nm, which has been improved efficiently.
基金supported by the Natural Science Foundation for Distinguished Young Scholars of Hubei Province of China (2023AFA065)the National Key Research and Development Program (2019YFB2205100)Hubei Province Key Scientific and Technological Project (2022AEA001)。
基金supported in part by the National Natural Science Foundation of China(Nos.60907032,61205121,and 61275124)the China Postdoctoral Science Foundation(No.2013M540361)+1 种基金the Natural Science Foundation of Zhejiang Province(No.LY13F010011)the Zhejiang Youth Science Fund(No.LQ13F050005)
文摘We propose an ultra-wideband optical diode device based on two-dimensional square-lattice photonic crystals. For the device, the odd mode is completely transmitted in one direction and converted to the fundamental even mode, but completely reflected in the other direction. The operation bandwidth of the device is preserved within a rather wide range of frequencies, which is over 6.5% of the central frequency. A directional coupler and 90° bend are utilized as the composite function device with mode filter and mode converter. It is possible that the photonic crystal device can help to construct on-chip optical logical devices and benefit greatly to the optical systems with multiple spatial modes.
文摘A compact multimode interference (MMI) splitter with silicon photonic nanowires on silicon-on-insulator (SOI) substrate is designed and fabricated. The footprint of the MMI section is only approximately 3×10 (μm). The simulation results show that the device may have a low excess loss of 0.04 dB. The transmission loss of the silicon photonics wire is measured to be 0.73±0.3 dB/mm. The compact size and low transmission loss allow the device to be used in ultra-compact photonic integrated circuits. The device exhibits a good light splitting function. In a spectral range of 1549-1560 nm, the excess loss is 1.5 dB and the average imbalance between the two channels is 0.51 dB.
基金supported by EC through the PHOLOGIC (FP6-017158)supported by EC through the LANCER (FP6-033574)+3 种基金supported by EC through the POLYCERNET (MCRTN-019601)supported by EC through the WADIMOS (FP7-216405)supported by EC through the HELIOS (FP7-224312) projectsby PAT through the HCSC and NAOMI projects, and by a grant from INTEL.
文摘Low dimensional silicon, where quantum size effects play significant roles, enables silicon with new photonic functionalities. In this short review, we discuss the way that silicon nanocrystals are produced, their optoelectronic properties and a few device applications. We demonstrate that low dimensional silicon is an optimum material for developing silicon photonics.
文摘During the past decades,atomically thin,two-dimensional(2D)layered materials have attracted tremen-dous research interest on both fundamental properties and practical applications because of their extraordinary mechanical,thermal,electrical and optical properties,which are distinct from their counterparts in the bulk format.Various fabrication methods,such as soft-lithography,screen-printing,colloidal-templating and chemical/dry etching have been developed to fabricate micro/ nanostructures in 2D materials.Direct laser fabrication with the advantages of unique three-dimensional(3D)processing capability,arbitrary-shape designability and high fabrication accuracy up to tens of nanometers,which is far beyond the optical diffraction limit,has been widely studied and applied in the fabrication of various micro/ nanostructures of 2D materials for functional devices.This timely review summarizes the laser-matter interaction on 2D materials and the significant advances on laser-assisted 2D materials fabrication toward diverse functional photonics,optoelectronics,and electrochemical energy storage devices.The perspectives and challenges in designing and improving laser fabricated 2D materials devices are discussed as well.