We propose a novel two-dimensional photonic crystal structure consisting of two line defect waveguides and a cavity to realize mode conversion based on the coupling effect. The W1/cavity/W2 structure breaks the spatia...We propose a novel two-dimensional photonic crystal structure consisting of two line defect waveguides and a cavity to realize mode conversion based on the coupling effect. The W1/cavity/W2 structure breaks the spatial symmetry and successfully converts the even(odd) mode to the odd(even) mode in the W2 waveguide during the forward(backward)transmission. When considering the incidence of only the even mode, the optical diode effect emerges and achieves approximate 35 d B unidirectionality at the resonant frequency. Moreover, owing to the narrow bandpass feature and the flexibility of the tuning cavity, utilization of the proposed structure as a wavelength filter is demonstrated in a device with a Y-branch splitter. Here, we provide a heuristic design for a mode converter, optical diode, and wavelength filter derived from the coupling effect between a cavity and adjacent waveguides, and expect that the proposed structure can be applied as a building block in future all-optical integrated circuits.展开更多
The high voltage required to overcome the thermodynamic threshold and the complicated kinetics of the water splitting reaction limit the efficiency of single semiconductor-based photoelectrochemistry.A semiconductor/s...The high voltage required to overcome the thermodynamic threshold and the complicated kinetics of the water splitting reaction limit the efficiency of single semiconductor-based photoelectrochemistry.A semiconductor/solar cell tandem structure has been theoretically demonstrated as a viable path to achieve an efficient direct transformation of sunlight into chemical energy.However,compact designs exhibiting the indispensable optimally balanced light absorption have not been demonstrated.In the current work,we design and implement a compact tandem providing the complementary absorption of a highly transparent BiVO_(4)photoanode and a PM6:Y6 solar cell.Such bandgap combination approaches the optimal to reach the solar-to-hydrogen(STH)conversion upper limit for tandem photoelectrochemical cells(PECs).We demonstrate that,by using a photonic multilayer structure to adequately balance sunlight absorption among both tandem materials,a 25%increase in the bias-free STH conversion can be achieved,setting a clear path to take compact tandem PECs to the theoretical limit performance.展开更多
Near-infrared single photon sources in telecommunication bands, especially at 1550 nm, are required for long-distance quantum communication. Here a down-conversion quantum interface is implemented, where the single ph...Near-infrared single photon sources in telecommunication bands, especially at 1550 nm, are required for long-distance quantum communication. Here a down-conversion quantum interface is implemented, where the single photons emitted from single In As quantum dot at 864 nm is down converted to 1552 nm by using a fiber-coupled periodically poled lithium niobate(PPLN) waveguide and a 1.95 μmm pump laser, and the frequency conversion efficiency is ~40%. The singlephoton purity of quantum dot emission is preserved during the down-conversion process, i.e., g^((2))(0), only 0.22 at 1552 nm.This present technique advances the Ⅲ-Ⅴ semiconductor quantum dots as a promising platform for long-distance quantum communication.展开更多
We theoretically investigate single-photon polarization conversion via scattering by an atom with Λ configuration coupled to a semi-infinite waveguide and discuss the two cases in which the Λ system is non-degenerat...We theoretically investigate single-photon polarization conversion via scattering by an atom with Λ configuration coupled to a semi-infinite waveguide and discuss the two cases in which the Λ system is non-degenerated and degenerated. By applying the hard-wall boundary condition of the semi-infinite waveguide, it is found that singlephoton polarization conversion can be realized with unit probability for both cases under the ideal condition.Together with the polarization conversion, the frequency conversion of a single photon can also be realized with unit probability in the ideal case if the Λ system is not degenerated.展开更多
Using the single particle theory and the non-flexibility collision model of electron and photon, the influence of the uncaptured electrons on the energy conversion efficiency of multi-photon nonlinear Compton scatteri...Using the single particle theory and the non-flexibility collision model of electron and photon, the influence of the uncaptured electrons on the energy conversion efficiency of multi-photon nonlinear Compton scattering in the extra stationary laser-plasma is investigated. It shows that in extra stationary laser-plasma,the uncaptured electrons make the Δω of the scattering frequency of the multi-photon Compton fall down with the increases of the incident radiation electron speed,the materials of the incident collision of electron and photon, and the number of the photons which work with the electrons at the same time. Under the modulation of the uncaptured electrons to the laser field, the energy conversion efficiency between electrons and photons will fall down with the increase of the electron incident radiation speed, using the low-power electrons for incident source, the loss can be efficiently reduced.展开更多
Three dye-doped polymer rods in different matrices were synthesized in which weak hydrogen bond, strong hydrogen bond and covalent bond existed between the dye and the polymer chain. And the two-photon up-conversion...Three dye-doped polymer rods in different matrices were synthesized in which weak hydrogen bond, strong hydrogen bond and covalent bond existed between the dye and the polymer chain. And the two-photon up-conversion luminescent properties of HMASPS and HEASPS1 in three different microenvironments were studied.展开更多
The single photon frequency conversion is investigated theoretically in the system composed of a V-type system chiral coupling to a pair of waveguides. The single photon scattering amplitudes are obtained using the re...The single photon frequency conversion is investigated theoretically in the system composed of a V-type system chiral coupling to a pair of waveguides. The single photon scattering amplitudes are obtained using the real-space Hamiltonian. The calculated results show that the probability of single photon frequency down-or up-conversion can reach a unit by choosing appropriate parameters in the non-dissipative system with perfect chiral coupling.We present a nonreciprocal single photon beam splitter whose frequency of the output photon is different from that of the input photon. The influences of dissipations and non-perfect chiral coupling on the single frequency conversion are also shown. Our results may be useful in designing quantum devices at the single-photon level.展开更多
In this paper, we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration. A segment of 10-m photonic crystal fiber with a high nonlinear coefficient ...In this paper, we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration. A segment of 10-m photonic crystal fiber with a high nonlinear coefficient of 62.8 W-1/kin is utilized to realize large scale soliton self-frequency shift relevant to the power of the sampled optical signal. Furthermore, a 100-m dispersion-increasing fiber is used as the spectral compression module for further resolution enhancement. Simulation results show that 317-nm maximum wavelength shift is realized with 1550-nm initial wavelength and 6-bit quantization resolution is obtained with a subsequent spectral compression process.展开更多
In this paper, we optimize a proposed all-optical quantization scheme based on soliton self-frequency shift(SSFS)and pre-chirp spectral compression techniques. A 10m-long high-nonlinear photonic crystal fiber(PCF) is ...In this paper, we optimize a proposed all-optical quantization scheme based on soliton self-frequency shift(SSFS)and pre-chirp spectral compression techniques. A 10m-long high-nonlinear photonic crystal fiber(PCF) is used as an SSFS medium relevant to the power of the sampled optical pulses. Furthermore, a 10m-long dispersion flattened hybrid cladding hexagonal-octagonal PCF(6/8-PCF) is utilized as a spectral compression medium to further enhance the resolution. Simulation results show that 6-bit quantization resolution is still obtained when a 100m-long dispersion-increasing fiber(DIF)is replaced by a 6/8-PCF in spectral compression module.展开更多
The up-conversion luminescence tuning of rare-earth ions is an important research topic for understanding luminescence mechanisms and promoting related applications. In this paper, we experimentally study the up-conve...The up-conversion luminescence tuning of rare-earth ions is an important research topic for understanding luminescence mechanisms and promoting related applications. In this paper, we experimentally study the up-conversion luminescence tuning of Er3+-doped ceramic glass excited by the unshaped, V-shaped and cosine-shaped femtosecond laser field with different laser powers. The results show that green and red up-conversion luminescence can be effectively tuned by varying the power or spectral phase of the femtosecond laser field. We further analyze the up-conversion luminescence tuning mechanism by considering different excitation processes, including single-photon absorption(SPA), two-photon absorption(TPA), excited state absorption(ESA), and energy transfer up-conversion(ETU). The relative weight of TPA in the whole excitation process can increase with the increase of the laser power, thereby enhancing the intensity ratio between green and red luminescence(I547/I656). However, the second ETU(ETU2) process can generate red luminescence and reduce the green and red luminescence intensity ratio I547/I656, while the third ESA(ESA3) process can produce green luminescence and enhance its control efficiency. Moreover, the up-conversion luminescence tuning mechanism is further validated by observing the up-conversion luminescence intensity, depending on the laser power and the down-conversion luminescence spectrum under the excitation of 400-nm femtosecond laser pulse. These studies can present a clear physical picture that enables us to understand the up-conversion luminescence tuning mechanism in rare-earth ions, and can also provide an opportunity to tune up-conversion luminescence to promote its related applications.展开更多
Proposed is an interference type of optical analog-to-digital conversion(ADC). The refractive index of Fabry-Perot cavity changes with different voltages. The Fabry-Perot resonator converts electronic intensity into l...Proposed is an interference type of optical analog-to-digital conversion(ADC). The refractive index of Fabry-Perot cavity changes with different voltages. The Fabry-Perot resonator converts electronic intensity into light wavelength through selecting lights of different wavelengthes. The parameters of the scheme are acquired with the transmission matrix of optical element and the time of steady-state light field. The maximum sampling speedes of 4-bit, 6-bit, 7-bit, 8-bit and 9-bit(ADC) are 1.695×1010 count/s, 4.33×109 count/s, 2.38×109 count/s, 1.24×109 count/s and 5.9×108 count/s, respectively.展开更多
A non-polar organic dye, E, E-1, 4-bis[4'-(N,N-dibutylamino)styryl]-2,5-dimethoxybenzene (DBASDMB), has been synthesized and characterized, and its structure has been determined. Pumped with a 200fs pulse this dy...A non-polar organic dye, E, E-1, 4-bis[4'-(N,N-dibutylamino)styryl]-2,5-dimethoxybenzene (DBASDMB), has been synthesized and characterized, and its structure has been determined. Pumped with a 200fs pulse this dye showed the up-conversion laser properties. The influences of various organic solvents and different pumping wavelength on the laser properties have been demonstrated.展开更多
Parametric down-conversion(PDC) sources play an important role in quantum information processing, therefore characterizing their properties is necessary. Here we present a statistical model to assess the properties ...Parametric down-conversion(PDC) sources play an important role in quantum information processing, therefore characterizing their properties is necessary. Here we present a statistical model to assess the properties of the PDC source with certain distribution, such as the brightness and photon channel transmissions, we only need to measure the singles and coincidences counts in a few seconds. Furthermore, we validate the model by applying it to a PDC source generating highly non-degenerate photon pairs. The results of the experiment indicate that our method is more simple, efficient, and less time consuming.展开更多
Light plays a central role in many applications.The key to unlocking its versatility lies in shaping it into the most appropriate form for the task at hand.Specifically tailored refractive index modifications,directly...Light plays a central role in many applications.The key to unlocking its versatility lies in shaping it into the most appropriate form for the task at hand.Specifically tailored refractive index modifications,directly manufactured inside glass using a short pulsed laser,enable an almost arbitrary control of the light flow.However,the stringent requirements for quantitative knowledge of these modifications,as well as for fabrication precision,have so far prevented the fabrication of light-efficient aperiodic photonic volume elements(APVEs).Here,we present a powerful approach to the design and manufacturing of light-efficient APVEs.We optimize application-specific three-dimensional arrangements of hundreds of thousands of microscopic voxels and manufacture them using femtosecond direct laser writing inside millimeter-sized glass volumes.We experimentally achieve unprecedented diffraction efficiencies up to 80%,which is enabled by precise voxel characterization and adaptive optics during fabrication.We demonstrate APVEs with various functionalities,including a spatial mode converter and combined intensity shaping and wavelength multiplexing.Our elements can be freely designed and are efficient,compact,and robust.Our approach is not limited to borosilicate glass but is potentially extendable to other substrates,including birefringent and nonlinear materials,giving a preview of even broader functionalities,including polarization modulation and dynamic elements.展开更多
Wavelength conversion based on four-wave mixing (FWM) has been demonstrated using a 40-m dispersion flattened highly nonlinear photonic crystal fiber (HNL-PCF). A conversion efficiency of -26 dB for a pump power o...Wavelength conversion based on four-wave mixing (FWM) has been demonstrated using a 40-m dispersion flattened highly nonlinear photonic crystal fiber (HNL-PCF). A conversion efficiency of -26 dB for a pump power of 19.5 dBm and a conversion bandwidth of 28 nm have been obtained, which are limited by the continuous wave (CW) laser wavelength range and tunability of optical band pass filters (OBPFs).展开更多
An out-of-plane silicon grating coupler capable of mode-order conversion at the chip–fiber interface is designed and fabricated. Optimization of the structure is performed through finite-difference time-domain simula...An out-of-plane silicon grating coupler capable of mode-order conversion at the chip–fiber interface is designed and fabricated. Optimization of the structure is performed through finite-difference time-domain simulations,and the final device is characterized through far-field profile and transmission measurements. A coupling loss of 3.1 dB to a commercial two-mode fiber is measured for a single TE0→ LP11 mode conversion grating, which includes a conversion penalty of 1.3 dB. Far-field patterns of the excited LP11 mode profile are also reported.展开更多
Typically, photonic waveguides designed for nonlinear frequency conversion rely on intuitive and established principles, including index guiding and bandgap engineering, and are based on simple shapes with high degree...Typically, photonic waveguides designed for nonlinear frequency conversion rely on intuitive and established principles, including index guiding and bandgap engineering, and are based on simple shapes with high degrees of symmetry. We show that recently developed inverse-design techniques can be applied to discover new kinds of microstructured fibers and metasurfaces designed to achieve large nonlinear frequency-conversion efficiencies. As a proof of principle, we demonstrate complex, wavelength-scale chalcogenide glass fibers and gallium phosphide three-dimensional metasurfaces exhibiting some of the largest nonlinear conversion efficiencies predicted thus far,e.g., lowering the power requirement for third-harmonic generation by 104 and enhancing second-harmonic generation conversion efficiency by 107. Such enhancements arise because, in addition to enabling a great degree of tunability in the choice of design wavelengths, these optimization tools ensure both frequency-and phase-matching in addition to large nonlinear overlap factors.展开更多
All-optical analog-to-digital conversion (ADC) has been extensively researched to break through the inherently limited operating speed of electronic devices. In this paper, we use the photonic crystal fiber (PCF) for ...All-optical analog-to-digital conversion (ADC) has been extensively researched to break through the inherently limited operating speed of electronic devices. In this paper, we use the photonic crystal fiber (PCF) for time-stretch (TS) analog-to-digital (A/D) conversion system through generating low noise, linear chirp distribution and flat super-continuum (SC). Based on the radio frequency (RF) analog signal modulated to the linearly chirped super-continuum, the large-dispersion photonic crystal fiber is used for time-domain stretching.展开更多
We propose a simple scheme to generate an arbitrary photon-added coherent state of a travelling optical field by combining an array of degenerate parametric amplifiers and corresponding single-photon detectors. Partic...We propose a simple scheme to generate an arbitrary photon-added coherent state of a travelling optical field by combining an array of degenerate parametric amplifiers and corresponding single-photon detectors. Particularly, when the single-photon-added coherent state is observed by developing the novel technique of Zavatta et al (2004 Science 306 660), we can simultar/eously obtain the generalized N-qubit W state.展开更多
Photocatalytic conversion of biomass is considered an effective,clean,and environmentally friendly route to obtain high-valued chemicals and hydrogen.However,the limited conversion efficiency and poor selectivity are ...Photocatalytic conversion of biomass is considered an effective,clean,and environmentally friendly route to obtain high-valued chemicals and hydrogen.However,the limited conversion efficiency and poor selectivity are still the main bottlenecks for photocatalytic biomass conversion.Herein,we report the highly selective photocatalytic conversion of glucose solution on holosymmetrically spherical three-dimensionally ordered macroporous TiO_(2)-CdSe heterojunction photonic crystal structure(s-TCS).The obtained s-TCS photocatalysts show excellent stability and strong light harvesting,uniform mass diffusion and exchange,and efficient photogenerated electrons/holes separation and utilization.The optimized s-TCS-4 photocatalyst displays the highest photocatalytic performance for glucose oxidation and hydrogen production.The glucose conversion,lactic acid selectivity,and yield on s-TCS-4 are about 95.9%,94.3%,and 96.4%,respectively.The photocatalytic production of lactic acid for s-TCS-4(18.5 g/L)is 2.3 times higher than the pure spherical TiO_(2) photonic crystal without CdSe(s-TiO_(2),8.1 g/L),and the hydrogen production rate of s-TCS-4 is 9.4 times that of s-TiO_(2).For the first time,we reveal that the photocatalytic conversion of glucose to lactic acid is a third-order and four-electron-involved reaction.This work could shed some new light on the efficient photocatalysis conversion of biomass to highly value-added products with high selectivity and yield,and simultaneously sustainable hydrogen evolution.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61372037 and 61307069)Beijing Excellent Ph.D. Thesis Guidance Foundation,China(Grant No.20131001301)the Natural Science Foundation of Shanxi Province,China(Grant No.2013021017-3)
文摘We propose a novel two-dimensional photonic crystal structure consisting of two line defect waveguides and a cavity to realize mode conversion based on the coupling effect. The W1/cavity/W2 structure breaks the spatial symmetry and successfully converts the even(odd) mode to the odd(even) mode in the W2 waveguide during the forward(backward)transmission. When considering the incidence of only the even mode, the optical diode effect emerges and achieves approximate 35 d B unidirectionality at the resonant frequency. Moreover, owing to the narrow bandpass feature and the flexibility of the tuning cavity, utilization of the proposed structure as a wavelength filter is demonstrated in a device with a Y-branch splitter. Here, we provide a heuristic design for a mode converter, optical diode, and wavelength filter derived from the coupling effect between a cavity and adjacent waveguides, and expect that the proposed structure can be applied as a building block in future all-optical integrated circuits.
基金the financial support by the European Commission through the LICROX project(grant 951843)partially funded by Ministerio de Ciencia e Innovación(grants Nos.CEX2019000910-S and PID2020-112650RB-I00)+3 种基金FundacióCellex,FundacióMir-Puig,and Generalitat de Catalunya through Centres de Recerca de Catalunyathe financial support by the Agencia Estatal de Investigación(grant PRE2018-084881)support from the Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación(grant FJC2020-043223-I)the Severo Ochoa Excel ence Post-doctoral Fellowship(grant CEX2019000910-S)
文摘The high voltage required to overcome the thermodynamic threshold and the complicated kinetics of the water splitting reaction limit the efficiency of single semiconductor-based photoelectrochemistry.A semiconductor/solar cell tandem structure has been theoretically demonstrated as a viable path to achieve an efficient direct transformation of sunlight into chemical energy.However,compact designs exhibiting the indispensable optimally balanced light absorption have not been demonstrated.In the current work,we design and implement a compact tandem providing the complementary absorption of a highly transparent BiVO_(4)photoanode and a PM6:Y6 solar cell.Such bandgap combination approaches the optimal to reach the solar-to-hydrogen(STH)conversion upper limit for tandem photoelectrochemical cells(PECs).We demonstrate that,by using a photonic multilayer structure to adequately balance sunlight absorption among both tandem materials,a 25%increase in the bias-free STH conversion can be achieved,setting a clear path to take compact tandem PECs to the theoretical limit performance.
基金Project supported by the National Key Technologies R&D Program of China(Grant No.2018YFA0306101)the Scientific Instrument Developing Project of Chinese Academy of Sciences(Grant No.YJKYYQ20170032)the National Natural Science Foundation of China(Grant No.61505196)
文摘Near-infrared single photon sources in telecommunication bands, especially at 1550 nm, are required for long-distance quantum communication. Here a down-conversion quantum interface is implemented, where the single photons emitted from single In As quantum dot at 864 nm is down converted to 1552 nm by using a fiber-coupled periodically poled lithium niobate(PPLN) waveguide and a 1.95 μmm pump laser, and the frequency conversion efficiency is ~40%. The singlephoton purity of quantum dot emission is preserved during the down-conversion process, i.e., g^((2))(0), only 0.22 at 1552 nm.This present technique advances the Ⅲ-Ⅴ semiconductor quantum dots as a promising platform for long-distance quantum communication.
基金Supported by the Anhui Provincial Natural Science Foundation under Grant Nos 1608085MA05 and 1608085MA09the National Natural Science Foundation of China under Grant Nos 11774262 and 11474003
文摘We theoretically investigate single-photon polarization conversion via scattering by an atom with Λ configuration coupled to a semi-infinite waveguide and discuss the two cases in which the Λ system is non-degenerated and degenerated. By applying the hard-wall boundary condition of the semi-infinite waveguide, it is found that singlephoton polarization conversion can be realized with unit probability for both cases under the ideal condition.Together with the polarization conversion, the frequency conversion of a single photon can also be realized with unit probability in the ideal case if the Λ system is not degenerated.
文摘Using the single particle theory and the non-flexibility collision model of electron and photon, the influence of the uncaptured electrons on the energy conversion efficiency of multi-photon nonlinear Compton scattering in the extra stationary laser-plasma is investigated. It shows that in extra stationary laser-plasma,the uncaptured electrons make the Δω of the scattering frequency of the multi-photon Compton fall down with the increases of the incident radiation electron speed,the materials of the incident collision of electron and photon, and the number of the photons which work with the electrons at the same time. Under the modulation of the uncaptured electrons to the laser field, the energy conversion efficiency between electrons and photons will fall down with the increase of the electron incident radiation speed, using the low-power electrons for incident source, the loss can be efficiently reduced.
基金This work was supported by the grant for State Key Program of China.
文摘Three dye-doped polymer rods in different matrices were synthesized in which weak hydrogen bond, strong hydrogen bond and covalent bond existed between the dye and the polymer chain. And the two-photon up-conversion luminescent properties of HMASPS and HEASPS1 in three different microenvironments were studied.
基金Supported by the Anhui Provincial Natural Science Foundation under Grant No 1608085MA09the National Natural Science Foundation of China under Grant Nos 11774262,61675006,11474003 and 61472282
文摘The single photon frequency conversion is investigated theoretically in the system composed of a V-type system chiral coupling to a pair of waveguides. The single photon scattering amplitudes are obtained using the real-space Hamiltonian. The calculated results show that the probability of single photon frequency down-or up-conversion can reach a unit by choosing appropriate parameters in the non-dissipative system with perfect chiral coupling.We present a nonreciprocal single photon beam splitter whose frequency of the output photon is different from that of the input photon. The influences of dissipations and non-perfect chiral coupling on the single frequency conversion are also shown. Our results may be useful in designing quantum devices at the single-photon level.
基金Project supported by the National Basic Research Program of China(Grant Nos.2010CB327605 and 2010CB328304)the National High-Technology Research and Development Program of China(Grant No.2013AA031501)+7 种基金the National Natural Science Foundation of China(Grant No.61307109)the Research Foundation from Ministry of Education of China(Grant No.109015)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NECT-11-0596)the Beijing Nova Program,China(Grant No.2011066)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120005120021)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.2013RC1202)the China Postdoctoral Science Foundation(Grant No.2012M511826)the Postdoctoral Science Foundation of Guangdong Province,China(Grant No.244331)
文摘In this paper, we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration. A segment of 10-m photonic crystal fiber with a high nonlinear coefficient of 62.8 W-1/kin is utilized to realize large scale soliton self-frequency shift relevant to the power of the sampled optical signal. Furthermore, a 100-m dispersion-increasing fiber is used as the spectral compression module for further resolution enhancement. Simulation results show that 317-nm maximum wavelength shift is realized with 1550-nm initial wavelength and 6-bit quantization resolution is obtained with a subsequent spectral compression process.
文摘In this paper, we optimize a proposed all-optical quantization scheme based on soliton self-frequency shift(SSFS)and pre-chirp spectral compression techniques. A 10m-long high-nonlinear photonic crystal fiber(PCF) is used as an SSFS medium relevant to the power of the sampled optical pulses. Furthermore, a 10m-long dispersion flattened hybrid cladding hexagonal-octagonal PCF(6/8-PCF) is utilized as a spectral compression medium to further enhance the resolution. Simulation results show that 6-bit quantization resolution is still obtained when a 100m-long dispersion-increasing fiber(DIF)is replaced by a 6/8-PCF in spectral compression module.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51132004,11474096,11604199,U1704145,and 11747101)the Fund from the Science and Technology Commission of Shanghai Municipality,China(Grant No.14JC1401500)+1 种基金the Henan Provincial Natural Science Foundation,China(Grant No.182102210117)the Higher Educational Key Program of Henan Province of China(Gant Nos.17A140025 and 16A140030)
文摘The up-conversion luminescence tuning of rare-earth ions is an important research topic for understanding luminescence mechanisms and promoting related applications. In this paper, we experimentally study the up-conversion luminescence tuning of Er3+-doped ceramic glass excited by the unshaped, V-shaped and cosine-shaped femtosecond laser field with different laser powers. The results show that green and red up-conversion luminescence can be effectively tuned by varying the power or spectral phase of the femtosecond laser field. We further analyze the up-conversion luminescence tuning mechanism by considering different excitation processes, including single-photon absorption(SPA), two-photon absorption(TPA), excited state absorption(ESA), and energy transfer up-conversion(ETU). The relative weight of TPA in the whole excitation process can increase with the increase of the laser power, thereby enhancing the intensity ratio between green and red luminescence(I547/I656). However, the second ETU(ETU2) process can generate red luminescence and reduce the green and red luminescence intensity ratio I547/I656, while the third ESA(ESA3) process can produce green luminescence and enhance its control efficiency. Moreover, the up-conversion luminescence tuning mechanism is further validated by observing the up-conversion luminescence intensity, depending on the laser power and the down-conversion luminescence spectrum under the excitation of 400-nm femtosecond laser pulse. These studies can present a clear physical picture that enables us to understand the up-conversion luminescence tuning mechanism in rare-earth ions, and can also provide an opportunity to tune up-conversion luminescence to promote its related applications.
基金Natural Science Foundation from Colleges and Universities of Jiangsu Provine(06KJD510034)
文摘Proposed is an interference type of optical analog-to-digital conversion(ADC). The refractive index of Fabry-Perot cavity changes with different voltages. The Fabry-Perot resonator converts electronic intensity into light wavelength through selecting lights of different wavelengthes. The parameters of the scheme are acquired with the transmission matrix of optical element and the time of steady-state light field. The maximum sampling speedes of 4-bit, 6-bit, 7-bit, 8-bit and 9-bit(ADC) are 1.695×1010 count/s, 4.33×109 count/s, 2.38×109 count/s, 1.24×109 count/s and 5.9×108 count/s, respectively.
基金the State Key Program of China,the National Natural Science Foundation of China(50173015)NSFC/RGC(50218001)+1 种基金the Foundation for University Key Teacher by the Ministry of EducationChina Postdoctoral Foundation.
文摘A non-polar organic dye, E, E-1, 4-bis[4'-(N,N-dibutylamino)styryl]-2,5-dimethoxybenzene (DBASDMB), has been synthesized and characterized, and its structure has been determined. Pumped with a 200fs pulse this dye showed the up-conversion laser properties. The influences of various organic solvents and different pumping wavelength on the laser properties have been demonstrated.
基金Project supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant Nos.XDB01030100 and XDB01030300)the National Key Research and Development Program of China(Grant No.2016YFA0302600)the National Natural Science Foundation of China(Grant Nos.61475148 and 61575183)
文摘Parametric down-conversion(PDC) sources play an important role in quantum information processing, therefore characterizing their properties is necessary. Here we present a statistical model to assess the properties of the PDC source with certain distribution, such as the brightness and photon channel transmissions, we only need to measure the singles and coincidences counts in a few seconds. Furthermore, we validate the model by applying it to a PDC source generating highly non-degenerate photon pairs. The results of the experiment indicate that our method is more simple, efficient, and less time consuming.
基金supported by the Austrian Science Fund(FWF),grant no.I3984-N36the Engineering and Physical Sciences Research Council(EPSRC),grant no.R004803/01the German Research Foundation(DFG),grant no.409765270。
文摘Light plays a central role in many applications.The key to unlocking its versatility lies in shaping it into the most appropriate form for the task at hand.Specifically tailored refractive index modifications,directly manufactured inside glass using a short pulsed laser,enable an almost arbitrary control of the light flow.However,the stringent requirements for quantitative knowledge of these modifications,as well as for fabrication precision,have so far prevented the fabrication of light-efficient aperiodic photonic volume elements(APVEs).Here,we present a powerful approach to the design and manufacturing of light-efficient APVEs.We optimize application-specific three-dimensional arrangements of hundreds of thousands of microscopic voxels and manufacture them using femtosecond direct laser writing inside millimeter-sized glass volumes.We experimentally achieve unprecedented diffraction efficiencies up to 80%,which is enabled by precise voxel characterization and adaptive optics during fabrication.We demonstrate APVEs with various functionalities,including a spatial mode converter and combined intensity shaping and wavelength multiplexing.Our elements can be freely designed and are efficient,compact,and robust.Our approach is not limited to borosilicate glass but is potentially extendable to other substrates,including birefringent and nonlinear materials,giving a preview of even broader functionalities,including polarization modulation and dynamic elements.
基金the National Natural Science Foundation of China(No.60678043)Beijing Education Committee Common Build Foundation(No.XK100130637).
文摘Wavelength conversion based on four-wave mixing (FWM) has been demonstrated using a 40-m dispersion flattened highly nonlinear photonic crystal fiber (HNL-PCF). A conversion efficiency of -26 dB for a pump power of 19.5 dBm and a conversion bandwidth of 28 nm have been obtained, which are limited by the continuous wave (CW) laser wavelength range and tunability of optical band pass filters (OBPFs).
基金supported by the Engineering and Physical Sciences Research Council(EPSRC)UK through the Silicon Photonics for Future Systems(SPFS)Programme(EP/L00044X/1)the Photonic Phase Conjugation Systems(PHOS)(EP/S003436/1)
文摘An out-of-plane silicon grating coupler capable of mode-order conversion at the chip–fiber interface is designed and fabricated. Optimization of the structure is performed through finite-difference time-domain simulations,and the final device is characterized through far-field profile and transmission measurements. A coupling loss of 3.1 dB to a commercial two-mode fiber is measured for a single TE0→ LP11 mode conversion grating, which includes a conversion penalty of 1.3 dB. Far-field patterns of the excited LP11 mode profile are also reported.
文摘Typically, photonic waveguides designed for nonlinear frequency conversion rely on intuitive and established principles, including index guiding and bandgap engineering, and are based on simple shapes with high degrees of symmetry. We show that recently developed inverse-design techniques can be applied to discover new kinds of microstructured fibers and metasurfaces designed to achieve large nonlinear frequency-conversion efficiencies. As a proof of principle, we demonstrate complex, wavelength-scale chalcogenide glass fibers and gallium phosphide three-dimensional metasurfaces exhibiting some of the largest nonlinear conversion efficiencies predicted thus far,e.g., lowering the power requirement for third-harmonic generation by 104 and enhancing second-harmonic generation conversion efficiency by 107. Such enhancements arise because, in addition to enabling a great degree of tunability in the choice of design wavelengths, these optimization tools ensure both frequency-and phase-matching in addition to large nonlinear overlap factors.
基金supported by the Doctoral Program of Higher Education Research Fund (No.1101.01.001.672)
文摘All-optical analog-to-digital conversion (ADC) has been extensively researched to break through the inherently limited operating speed of electronic devices. In this paper, we use the photonic crystal fiber (PCF) for time-stretch (TS) analog-to-digital (A/D) conversion system through generating low noise, linear chirp distribution and flat super-continuum (SC). Based on the radio frequency (RF) analog signal modulated to the linearly chirped super-continuum, the large-dispersion photonic crystal fiber is used for time-domain stretching.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10304020 and 10474117), the State Key Development Program for Basic Research of China (Grant No 2001CB309309), and also in part by the Sunshine Project of Wuhan, China.
文摘We propose a simple scheme to generate an arbitrary photon-added coherent state of a travelling optical field by combining an array of degenerate parametric amplifiers and corresponding single-photon detectors. Particularly, when the single-photon-added coherent state is observed by developing the novel technique of Zavatta et al (2004 Science 306 660), we can simultar/eously obtain the generalized N-qubit W state.
基金supported by the National Key R&D Program of China(grant nos.2016YFA0202602 and 2021YFE0115800)National Natural Science Foundation of China(grant nos.21805220,U20A20122,and 52103285)+3 种基金Program of Introducing Talents of Discipline to Universities-Plan 111 from the Ministry of Science and Technology and the Ministry of Education of China(grant no.B20002)Natural Science Foundation of Hubei Province(grant nos.2020CFB416,2018CFB242,and 2018CFA054)the Fundamental Research Funds for the Central Universities(WUT:grant no.2021III016GX)Youth Innovation Research Fund project and the Open Fund Project of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing。
文摘Photocatalytic conversion of biomass is considered an effective,clean,and environmentally friendly route to obtain high-valued chemicals and hydrogen.However,the limited conversion efficiency and poor selectivity are still the main bottlenecks for photocatalytic biomass conversion.Herein,we report the highly selective photocatalytic conversion of glucose solution on holosymmetrically spherical three-dimensionally ordered macroporous TiO_(2)-CdSe heterojunction photonic crystal structure(s-TCS).The obtained s-TCS photocatalysts show excellent stability and strong light harvesting,uniform mass diffusion and exchange,and efficient photogenerated electrons/holes separation and utilization.The optimized s-TCS-4 photocatalyst displays the highest photocatalytic performance for glucose oxidation and hydrogen production.The glucose conversion,lactic acid selectivity,and yield on s-TCS-4 are about 95.9%,94.3%,and 96.4%,respectively.The photocatalytic production of lactic acid for s-TCS-4(18.5 g/L)is 2.3 times higher than the pure spherical TiO_(2) photonic crystal without CdSe(s-TiO_(2),8.1 g/L),and the hydrogen production rate of s-TCS-4 is 9.4 times that of s-TiO_(2).For the first time,we reveal that the photocatalytic conversion of glucose to lactic acid is a third-order and four-electron-involved reaction.This work could shed some new light on the efficient photocatalysis conversion of biomass to highly value-added products with high selectivity and yield,and simultaneously sustainable hydrogen evolution.