期刊文献+
共找到680篇文章
< 1 2 34 >
每页显示 20 50 100
Genetic Analysis and Primary Mapping of pms4, a Photoperiod-Sensitive Genic Male Sterility Gene in Rice (Oryza sativa) 被引量:12
1
作者 HUANG Ting-you WANG Zhi HU Yun-gao SHI Shou-pei PENG Tao CHU Xu-dong SHI Jun XIANG Zu-fen LIU Ding-you 《Rice science》 SCIE 2008年第2期153-156,共4页
To understand the genetic characteristics of a new photoperiod-sensitive genic male sterile line Mian 9S, some reciprocal crosses were made between Mian 9S and six indica rice materials, Yangdao 6, Luhui 602, Shuihui ... To understand the genetic characteristics of a new photoperiod-sensitive genic male sterile line Mian 9S, some reciprocal crosses were made between Mian 9S and six indica rice materials, Yangdao 6, Luhui 602, Shuihui 527, Mianhui 725, Fuhui 838 and Yixiang 1B. Genetic analysis results suggested that the photoperiod-sensitive genic male sterility (PGMS) of Mian 9S was controlled by a single recessive nuclear gene. Thus, the F2 population derived from the cross of Yangdao 6/Mian 9S was used to map the PGMS gene in Mian 9S. By using SSR markers, the PGMS gene of Mian 9S was mapped on one side of the markers, RM6659 and RM1305, on rice chromosome 4, with the genetic distances of 3.0 cM and 3.5 cM, respectively. The gene was a novel PGMS gene and designated tentatively as pms4. In addition, the application of the pms4 gene was discussed. 展开更多
关键词 genetic analysis gene mapping photoperiod-sensitive genic male sterility rice (Oryza sativa)
下载PDF
Mapping of a gene for photoperiod-sensitive genic male sterility in Nongken 58s on chromosome 5 of rice
2
作者 LIN Xinghua,YU Gongxin,ZHANG Duanpin,XIE Yuefeng,QIN Falan,State key laboratory in genetic improve ment of crops ,Huahong,Agri Univ,Wuhan 430070,China 《Chinese Rice Research Newsletter》 1996年第3期3-4,共2页
A photoperiod-sensitive genic male sterile (PGMS) rice was found in 1973 as a spontaneous mutant of Nongken 58, a japonica variety. Pollen fertility of Nongken 58s (N58s) is completely sterile when grown under long-da... A photoperiod-sensitive genic male sterile (PGMS) rice was found in 1973 as a spontaneous mutant of Nongken 58, a japonica variety. Pollen fertility of Nongken 58s (N58s) is completely sterile when grown under long-day conditions, whereas fertile under short-day conditions. This PGMS was found to be controlled by one or two recessive gene(s), of which one gene(pms)was linked to a marker gene(d-1) on chromosome 5. In order to identify a more precise location of the pms, we analyzed the populations of BCFand BCFof N58s//N58s/KL211(v-10, virescent) and N58s//N58s/KL520 (gh-1, gold hull). The marker genes v-10 and gh-1 are located on the flanking region of d-1. The F, plants of two crosses were fertile. The number of fertile and sterile individuals in BCFfit 展开更多
关键词 Mapping of a gene for photoperiod-sensitive genic male sterility in Nongken 58s on chromosome 5 of rice gene
下载PDF
Advances in DNA methylation and its role in cytoplasmic male sterility in higher plants
3
作者 Atiqur Rahman Hasan Sofiur Rahman +9 位作者 Shakil Uddin Naima Sultana Shirin Akhter Ujjal Kumar Nath Shamsun Nahar Begum Mazadul Islam Afroz Naznin Nurul Amin Sharif Ahmed Akbar Hossain 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期1-19,共19页
The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and ge... The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and gene expression,and the enzyme involved,DNA methyltransferase,executes the methylation process within the plant genome.By regulating crucial biological pathways,epigenetic changes actively contribute to the creation of the phenotype.Therefore,epigenome editing may assist in overcoming some of the drawbacks of genome editing,which can have minor off-target consequences and merely facilitate the loss of a gene’s function.These drawbacks include gene knockout,which can have such off-target effects.This review provides examples of several molecular characteristics of DNA methylation,as well as some plant physiological processes that are impacted by these epigenetic changes in the plants.We also discuss how DNA alterations might be used to improve crops and meet the demands of sustainable and environmentally-friendly farming. 展开更多
关键词 DNA methylation EPIgeneTICS CMS male sterility chromatin architecture gene expression higher plants
下载PDF
Characterizations and identification of the candidate gene of rice thermo-sensitive genic male sterile gene tms5 by mapping 被引量:33
4
作者 YANG Qing-kai1,LIANG Chun-yang1,LI Jun1,JIN De-min1,AHUANG Wen2,DENG Qi-yun2,WANG Bin1(1.The State Key Laboratory of Plant Genomics,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing,100101 2. Hunan Hybrid Rice Research Center,Changsha 410125) 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第S1期204-,共1页
Previous study indicated that the thermo-sensitive genic malesterile(TGMS) gene in rice was regulated by temperature.TGMS rice plays an important role in hybrid rice production,because the application of the TGMS syst... Previous study indicated that the thermo-sensitive genic malesterile(TGMS) gene in rice was regulated by temperature.TGMS rice plays an important role in hybrid rice production,because the application of the TGMS system in two-line breeding is laborsaving,timesaving,simple,inexpensive,efficient,and eliminating the limitations of the cytoplasmic male sterility(CMS) system.'AnnongS' is the first discovered and deeply studied TGMS rice lines in China.'AnnongS-1' and 'Y58S',two derivatives of TGMS line AnnongS,were both controlled by a single recessive gene named tms5,which was genetically mapped on chromosome 2.In this study,three populations('AnnongS-1' × 'Nanjing11','Y58S' × 'Q611',and 'Y58S' × 'Guanghui122') were developed and used for the molecular fine mapping of the tms5 gene.By analyzing recombination events in the sterile individuals using a total of 125 probes covering the tms5 region,the tms5 gene was physically mapped to a 19-kb DNA fragment between two markers 4039-1 and 4039-2,which were located on the BAC clone AP004039.After the construction of the physical map between two markers 4039-1 and 4039-2,a member(ONAC023) of the NAC(NAM-ATAF-CUC-related) gene family was identified as the candidate gene of the tms5 gene. 展开更多
关键词 gene Characterizations and identification of the candidate gene of rice thermo-sensitive genic male sterile gene tms5 by mapping
下载PDF
Genetic Analysis and Preliminary Mapping of a Highly Male-Sterile Gene in Foxtail Millet(Setaria italica L.Beauv.) Using SSR Markers 被引量:7
5
作者 WANG Jun WANG Zhi-lan +8 位作者 YANG Hui-qing YUAN Feng GUO Er-hu TIAN Gang AN Yuan-huai LI Hui-xia WANG Yu-wen DIAO Xian-min GUO Ping-yi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第12期2143-2148,共6页
Breeding of male-sterile lines has become the mainstream for the heterosis utilization in foxtail millet,but the genetic basis of most male-sterile lines used for the hybrid is still an area to be elucidated.In this s... Breeding of male-sterile lines has become the mainstream for the heterosis utilization in foxtail millet,but the genetic basis of most male-sterile lines used for the hybrid is still an area to be elucidated.In this study,a highly male-sterile line Gao146A was investigated.Genetic analysis indicated that the highly male-sterile phenotype was controlled by a single recessive gene a single recessive gene.Using F 2 population derived from cross Gao146A/K103,one gene controlling the highly male- sterility,tentatively named as ms1,which linked to SSR marker b234 with genetic distance of 16.7 cM,was mapped on the chromosome VI.These results not only laid the foundation for fine mapping of this highly male-sterile gene,but also helped to accelerate the improvement of highly male-sterile lines by using molecular marker assisted breeding method. 展开更多
关键词 foxtail millet(Setaria italic L.Beauv.) highly male-sterility gene mapping SSR marker
下载PDF
Differential RNA Editing of Mitochondrial Genes in WA-Cytoplasmic Based Male Sterile Line Pusa 6A, and Its Maintainer and Restorer Lines
6
作者 Umakanta NGANGKHAM Swarup Kumar PARIDA +1 位作者 Ashok Kumar SINGH Trilochan MOHAPATRA 《Rice science》 SCIE CSCD 2019年第5期282-289,共8页
RNA editing changes the nucleotides at the transcript level of mitochondrial genes which results in synthesis of functional proteins.This study was designed to find the editing sites which could be implicated in male ... RNA editing changes the nucleotides at the transcript level of mitochondrial genes which results in synthesis of functional proteins.This study was designed to find the editing sites which could be implicated in male fertility restoration and to develop editing based markers for differentiation of cytoplasmic male sterility and maintainer lines from each other.DNA and RNA from young panicles were isolated from three-line system of hybrid rice PRH10,wild abortive(WA)cytoplasm based male sterile(A line Pusa 6A),maintainer(B line Pusa 6B)and restorer(R line PRR78)lines.Pusa 6A and PRR78 having the same WA cytoplasm are allo-nuclear and iso-cytpolasmic lines.The genomic and cDNA amplicons for eight mitochondrial genes(18SrRNA,atp6,atp9,cobII,coxI,coxIII,nadI and rps3)were sequenced and compared.Differences in genomic and cDNA sequences were considered as editing.Two hundred and thirty editing sites having base substitution or insertion/deletion were identified with the highest in 18SrRNA(5.74%)and the lowest in coxI(0.60%).The highest editing sites were observed in fertile maintainer Pusa 6B followed by PRR78 and Pusa 6A,of which random five editing sites in five different rice mitochondrial transcripts namely atp9,cobII,coxIII,rps3 and 18SrRNA were chosen and validated through cleaved amplified polymorphism sequence(CAPS)analysis and found to be partially edited in four genes.The identical editing sites of different mitochondrial genes from maintainer and restorer lines might reflect their possible contribution to fertility restoration of sterile WA cytoplasm. 展开更多
关键词 cleaved amplified polymorphism sequence CYTOPLASMIC male sterilITY hybrid rice RNAediting mitochondrial gene WILD abortive NUCLEOTIDE
下载PDF
Influence of Genetic Drift of Restoring Gene (Rf) on Seed Purity of Yuetai A, a Honglian-Type Cytoplasmic Male Sterile Line in Hybrid Rice
7
作者 WANG Ji-feng Lu Zuo-mei 《Rice science》 SCIE 2008年第2期101-109,共9页
The seed samples of Yuetai A, a Honglian (HL) type cytoplasmic male sterile (CMS) line in hybrid rice were investigated to assess the seed purity and to analyze the cause of off-type plants by imitating the biolog... The seed samples of Yuetai A, a Honglian (HL) type cytoplasmic male sterile (CMS) line in hybrid rice were investigated to assess the seed purity and to analyze the cause of off-type plants by imitating the biological contaminant to Yuetai A in Nanjing, Jiangsu Province and Lingshui, Hainan Province during 2004-2006. The seed impurity of Yuetai A mainly resulted from the genetic drift of restoring fertility gene (Rt) after biological contamination but not from its sterility unstability. All of the ten maintainer lines, five restorer lines and three thermo-sensitive genic male sterile lines used in the study could pollinate Yuetai A and Yuetai B to produce F1 plants, directly or indirectly resulting in Rf-gene drifting into Yuetai A and generating 'iso-cytoplasm restoring-generations'. Furthermore, high outcrossing rate and similar heading date of Yuetai A with many varieties used in rice production might easily result in the biological contamination. After removing all plants with Rf-gene mixed in Yuetai A and preventing Rf-gene drifting into Yuetai A, the seed purity of Yuetai A and Yuetai B had been raised to 100%. 展开更多
关键词 seed purity restoring gene sterility stability iso-cytoplasm restoring-generations cytoplasmic male sterile line hybrid rice
下载PDF
Studies on the Photoperiod Sensitive Characters of Male Fertility Alteration of Peiai64S' Main Male Genic Sterile Gene
8
作者 ZENG Han-lai,ZHANG Duan-pin,ZHANG Zhi-yu,YI Wen-kai,ZHU Xin and MENG Hui-jun(National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University , Wuhan 430070 , P. R . China ) 《Agricultural Sciences in China》 CAS CSCD 2002年第5期481-485,共5页
Peiai64S, an indica male sterile rice with a male fertility alteration under different environments, is selected from the offspring of indica rice crossed with Nongken58S. Nongken58S, a japonica pho-toperiod sensitive... Peiai64S, an indica male sterile rice with a male fertility alteration under different environments, is selected from the offspring of indica rice crossed with Nongken58S. Nongken58S, a japonica pho-toperiod sensitive genie male sterile rice (PGMS), deriving from a natural mutant plant individual of normal japonica rice variety, Nongken58, is used as a male sterile gene donor of Peiai64S. But Peiai64S is not a typical PGMS rice, the male fertility is sensitive to temperature just as thermo-sensitive genie male sterile rice (TGMS). We have selected typical PGMS plants in F2 population of Peiai64S× Nongken58, whose ratio of fertile plants to sterile plants is nearly 3:1. The sterility inheritance conformed to one pair of gene segregation model. The result indicates the main male sterile gene in Peiai64S is not other than the PGMS gene, and comes from Nongken58S. The genetic background affects effective expression of the PGMS gene. This suggests that we ought to focus on optimizing the genetic background of the PGMS gene in PGMS rice breeding, and select an ideal genetic background as a transgenic background in molecular breeding. 展开更多
关键词 Peiai64S photoperiod-sensitive genie male sterility (PGMS) genetic background gene expression
下载PDF
Progresses and Strategies of Gene Mapping and Isolating of Photo(thermo) sensitive Genic Male Sterile Rice
9
作者 江树业 《High Technology Letters》 EI CAS 2000年第3期91-94,共4页
Considering the research on classical genetics of photoperiod(therm) sensitive genic male sterile rice, it is important to select the sterile lines and their segregating population controlled by one pair of gene in ma... Considering the research on classical genetics of photoperiod(therm) sensitive genic male sterile rice, it is important to select the sterile lines and their segregating population controlled by one pair of gene in mapping and isolating sterile genes. It is discussed the advantages, disadvantages and the reasons leading to various mapping results of chromosome location of sterile genes through gene marker, isozyme marker and DNA marker techniques. In comparison to isolation of photo(thermo) sensitive sterile genes via various plant gene cloning techniques, it was concluded that map based cloning was acceptable, but it is still difficult to locate the loci of sterile genes within 1cM. On the other hand, “sensitivity to environment”, an important characteristic of sterile lines can be fully utilized by DD PCR and (or) RDA techniques. Therefore, these two techniques were considered as the effective ways to isolate sterile genes. 展开更多
关键词 RICE PHOTOPERIOD (therm) SENSITIVE GENIC male sterilITY gene isolating and CLONING
下载PDF
Mapping of Fertility Restoring Gene for Aegilops kotschyi Cytoplasmic Male Sterility in Wheat Using SSR Markers 被引量:13
10
作者 LIU Bao-shen, SUN Qi-xin, GAO Qing-rong, SUN Lan-zhen, XIE Chao-jie, LI Chuan-you, NI Zhong-fu and DOU Bing-de( Agronomy Department, Shandong Agricultural University, Taian 271018, P.R.China Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094 , P. R . China ) 《Agricultural Sciences in China》 CAS CSCD 2002年第8期845-849,共5页
LK783 was found to be a good fertility restorer for K-type male sterility of wheat. Microsatel-lite markers were employed to map the major restoring gene in LK783. Maintainer and restorer DNA pools were established us... LK783 was found to be a good fertility restorer for K-type male sterility of wheat. Microsatel-lite markers were employed to map the major restoring gene in LK783. Maintainer and restorer DNA pools were established using the extreme sterile and fertile plants among (KJ5418A//911289/LK783)F1 population, respectively. Seventy-nine sets of SSR primers were screened for polymorphism between the two pools, 6 of which were found polymorphic. Linkage analysis showed that Xgwm11, Xgwm18, Xgwm264a and Xgwm273 were linked to the restoring gene in LK783, while Xgwm11, Xgwm18 and Xgwm273 were co-segregated. The distance between the Rf gene in LK783 and the three co-segregated markers was 6.54 ± 4.37 cM, the distance between Rf gene and Xgwm264a was 5. 71 ± 4.10 cM. The four SSR markers were located on chromosome IBS by amplifying the DNA of nulli-tetrasomics and ditelosomics of CS with the 4 sets of primers, indicating that the major restoring gene in LK783 was located on IBS, but the relative location of the gene was different from Rfv1, allelism of the two genes should be further investigated. The breeding for new fertility restorer lines of K-type cytoplasmic male sterility in wheat would be facilitated by using the four polymorphic markers. 展开更多
关键词 Wheat ( Triticum aestivum) Cytoplasmic male sterility Restoring gene Molecular marker MICROSATELLITE
下载PDF
Development of Japonica Male Sterile Lines Integrating Cytoplasmic Male Sterility and Photosensitive Genic Male Sterility 被引量:2
11
作者 WANG Shou-hai DU Shi-yun WANG De-zheng LI Cheng-quan 《Agricultural Sciences in China》 CAS CSCD 2005年第12期883-889,共7页
Acknowledgement It has been previously established that the BT type of cytoplasmic male sterility (CMS) is induced by high temperatures, while photosensitive genic male sterility (PGMS) seed sets by low temperatur... Acknowledgement It has been previously established that the BT type of cytoplasmic male sterility (CMS) is induced by high temperatures, while photosensitive genic male sterility (PGMS) seed sets by low temperatures induce. In the current study, we have bred photosensitive cytoplasmic male sterility (PCMS) lines (2308SA and 2310SA) by crossing the CMS line with the PGMS japonica line with maintainer genes. The sterility of PCMS japonica was consequently controlled by two groups of male sterile genes resulting from the integration of PGMS and CMS genes. The results on plant fertility, at different sowing times, were as follows: (a) Under conditions of natural long-day photoperiod and at temperatures above 35~C, the PGMS gene regulated PCMS japonica sterility - the higher the temperature, the lower the pollen fertility. However, bagged seed sets of PCMS japonica, not exposed to high temperatures, induced the CMS seed set. (b) Exposure to long-day photoperiod and temperature conditions between 35℃ and the critical sterility inducing temperature of PGMS resulted in both PGMS and CMS gene controlled sterility of PCMS japonica, which exhibited stable characteristics. (c) When exposed to critical sterility inducing temperatures or short-day photoperiod and daily high temperatures below 32℃, the BT type of the CMS gene regulated PCMS sterility. Under these conditions, the PGMS gene rendered male sterility insusceptible to occasional cool summer days when this PCMS line, adopted for hybrid seed production, develops into panicle differentiation stage. The present study also investigated the fertility restoration, seed production and combining ability of PCMS japonica so as to optimize its use. 展开更多
关键词 Oryza sativa var. japonica Photosensitive genic male sterility Cytoplasmic male sterility gene Photosensitive cytoplasmic male sterility
下载PDF
The cotton mitochondrial chimeric gene orf610a causes male sterility by disturbing the dynamic balance of ATP synthesis and ROS burst 被引量:3
12
作者 Yongjie Zhang Yang Han +12 位作者 Meng Zhang Xuexian Zhang Liping Guo Tingxiang Qi Yongqi Li Juanjuan Feng Hailin Wang Huini Tang Xiuqin Qiao Liangliang Chen Xiatong Song Chaozhu Xing Jianyong Wu 《The Crop Journal》 SCIE CSCD 2022年第6期1683-1694,共12页
Plant cytoplasmic male sterility(CMS)is maternally inherited and often manifested as aborted pollen development,but the molecular basis of abortion remains to be identified.To facilitate an investigation of CMS in cot... Plant cytoplasmic male sterility(CMS)is maternally inherited and often manifested as aborted pollen development,but the molecular basis of abortion remains to be identified.To facilitate an investigation of CMS in cotton,the complete sequence of cotton mitochondrial(mt)genome for CMS-D2 line ZBA was determined.The mt genome was assembled as a single circular molecule with 634,036 bp in length.A total of 194 ORFs,36 protein-coding genes,six r RNAs,and 24 t RNAs were identified.Several chimeric genes encoding hypothetical proteins with transmembrane domains were identified.Among them,a previously unknown chimeric gene,orf610a,which is composed of atp1 and a 485-bp downstream sequence of unknown nature,was identified.RT-PCR and q RT-PCR validation indicated that orf610a was expressed specifically in a sterile line.Ectopic expression of orf610a in yeast resulted in excessive accumulation of reactive oxygen species and reduction in ATP content,in addition to inhibition of cellular growth.Transgenic A.thaliana overexpressing orf610a fused with a mitochondrial targeting peptide displayed partial male sterility.Interaction between ORF610a and the nuclear-encoded protein RD22 indicated an association between ORF610a and pollen abortion.Positive feedback during transcriptional regulation between nuclear regulatory factors and the mt CMS gene may account for the male sterility of ZBA. 展开更多
关键词 Cytoplasmic male sterility Mitochondrial genome Chimeric gene Reactive oxygen species ATP
下载PDF
Mapping Major Restore Genes for C-type Cytoplasmic Male Sterility in Maize with SSR Marker 被引量:2
13
作者 TANG Ji-hua, LIU Zong-hua, CHEN Wei-cheng, HU Yan-min, JI Hong-qiang, JI Liang-yue, XIE Hui-ling and HUANG Xi-lin(Henan Agricultural University, Zhengzhou 450002 ) 《Agricultural Sciences in China》 CAS CSCD 2002年第3期269-273,共5页
Through observation about the restoration of male fertility of F2 and BC, progeny, we found that the restoring line Fengkel had two duplicating restorer genes. The restorer gene R/5 in Fengkel background was located o... Through observation about the restoration of male fertility of F2 and BC, progeny, we found that the restoring line Fengkel had two duplicating restorer genes. The restorer gene R/5 in Fengkel background was located on chromosome 5L by SSR method; it linked with bnlg1711, bnlg1346 and phi058, the genetic distances with bnlg1711, bnlg1346, and phi058 were 7.51cM, 1.68cM, and 9.87cM respectively; the restorer gene Rf4 was mapped on chromosome 8S linked with bnlg2307. 展开更多
关键词 MAIZE C-cytopIasmic male sterility Restorer genes SSR makers
下载PDF
Characterization and fine mapping of RTMS10, a semi-dominant reverse thermo-sensitive genic male sterile locus in rice 被引量:3
14
作者 NI Jin-long WANG De-zheng +3 位作者 NI Da-hu SONG Feng-shun YANG Jian-bo YAO Da-nian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第2期316-325,共10页
The discovery and application of environment-sensitive genic male sterile(EGMS) rice germplasm provide an easy method for hybrid rice breeding and have made great contributions to hybrid rice production. Typically, th... The discovery and application of environment-sensitive genic male sterile(EGMS) rice germplasm provide an easy method for hybrid rice breeding and have made great contributions to hybrid rice production. Typically, the photoperiod-and thermosensitive GMS(P/TGMS) lines utilized in two-line hybrid systems are male sterile under long day or/and high temperature but fertile under short day or/and low temperature conditions. However, Yannong S(Yn S), a reverse TGMS(rTGMS) line, is sterile under low temperature(<29℃) and fertile under high temperature(>29.5℃). Here, we report a genetic study on the rTGMS trait in Yn S. Interestingly, the F1 plants of the cross between Yn S and a cultivar, L422, were male sterile at 22℃ and completely fertile at 27℃. Moreover, the segregation ratio of fertile and sterile individuals in Yn S/L422 F2 populations changed from 1:3.05 to 2.95:1 when the ambient temperature increased, showing that the rTGMS trait exhibits semidominance in Yn S. We further found a locus on chromosome 10, termed RTMS10, which controls the rTGMS trait in Yn S. We then finely mapped RTMS10 to a ~68 kb interval between markers ID13116 and ID1318 by Yn S/L422 BC6 F2 populations. A near iso-genic line(NIL) NL1 from the BC6 F3 generation was developed and the pollen of NL1 became abnormal from the meiosis stage under low temperature. In summary, we identified an rTGMS locus, RTMS10, and provided co-segregated markers, which could help to accelerate molecular breeding of rTGMS lines and better understand the rTGMS trait in rice. 展开更多
关键词 RICE photoperiod-and thermo-sensitive genic male sterile(P/TGMS) reverse TGMS(rTGMS) gene mapping RTMS10
下载PDF
Mapping of Rice Fertility-Restoring Genes for ID-Type Cytoplasmic Male Sterility in a Restorer Line R68 被引量:1
15
作者 LI Liang-jie ZHOU Hai-peng ZHAN Xiao-deng CHENG Shi-hua CAO Li-yong 《Rice science》 SCIE 2008年第2期157-160,共4页
An F2 population derived from the cross Zhong 9A/R68 was used to map the fertility-restoring (Rf) gene for ID-type cytoplasmic male sterility (CMS). Two bulks (a fertile bulk and a sterile bulk) were constructed... An F2 population derived from the cross Zhong 9A/R68 was used to map the fertility-restoring (Rf) gene for ID-type cytoplasmic male sterility (CMS). Two bulks (a fertile bulk and a sterile bulk) were constructed by pooling equal amount of ten highly fertile lines and ten highly sterile lines, respectively. Four hundred and thirteen pairs of simple sequence repeat (SSR) primers, which evenly distributed on 12 chromosomes of rice, were selected for analyzing polymorphisms between the parents and between the two bulks. The primer RM283 on chromosome 1 and the primers RM5756, RM258, RM6100 and RM171 on chromosome 10 were found to be polymorphic between the parents and between the two bulks. These five SSR markers were linked to fertility-restoring genes. A total of 82 excessive sterile lines were selected from Zhong 9A/R68 F2 population to estimate the genetic distance between five SSR markers and fertility-restoring genes respectively. The results indicated that one Rf gene was linked to RM283 located on chromosome 1 at a distance of 6.7 cM, and the other Rfgene was mapped to the long arm of chromosome 10 flanked by RM258 and RM6100 at the distances of 8.0 cM and 2.4 cM, respectively. 展开更多
关键词 RICE cytoplasmic male sterility fertility-restoring gene gene mapping
下载PDF
Isolation and Analysis of the Promoter of OsRacD from PhotoperiodSensitive Genic Male Sterile Rice 被引量:1
16
作者 LIANG Wei-hong WU Nai-hu 《Rice science》 SCIE 2006年第1期29-33,共5页
By using OsRacD cDNA as probe to screen the genomic library of photoperiod sensitive genic male sterile rice line Nongken 58S, a positive clone containing 2 kb promoter and 396 bp coding region of OsRacD was obtained.... By using OsRacD cDNA as probe to screen the genomic library of photoperiod sensitive genic male sterile rice line Nongken 58S, a positive clone containing 2 kb promoter and 396 bp coding region of OsRacD was obtained. Compared with the promoter of OsRacD cloned by reverse PCR from normal rice variety Nongken 58 (Nongken 58N), the homology was 99.8%, and the different nucleotides were outside the predicted response elements in promoter, suggesting that the fertility between rice varieties Nongken 58S and Nongken 58N under the long-day conditions was not attributed to the difference in the structure of OsRacD upstream regulation sequences, but to the developmental regulation of gene differential expression. 展开更多
关键词 photoperiod sensitive genic male sterility RICE genomic library OsRacD gene PROMOTER
下载PDF
Plant Male Sterility Induced by Anti-Gene CYP86MF in Brassica oleracea var. italica 被引量:2
17
作者 HUANG Ke CAO Jia-shu +3 位作者 YU Xiao-lin YE Wan-zhi LU Gang XIANG Xun 《Agricultural Sciences in China》 CAS CSCD 2005年第11期806-810,共5页
An anti-gene CYP86MF was introduced into hypocotyls of broccoli (Brassica oleracea L.var. italica Plenck) with Agrobacterium tumefaciens, and the transgenic plants were obtained by kanamycin selection. The results o... An anti-gene CYP86MF was introduced into hypocotyls of broccoli (Brassica oleracea L.var. italica Plenck) with Agrobacterium tumefaciens, and the transgenic plants were obtained by kanamycin selection. The results of PCR, Southern blot and Northern blot indicated that the anti-CYP86MF has been integrated into chromosome of the transgenic plant. And also, plants with hypogenetic stamina or ungerminated pollen were observed. The transgenic male sterility plant could fructify via artificial pollination with normal pollen. Thus it was proved that the pistil of male sterility plant was normally developed, and the sterility originated from anti-CYP86MF. 展开更多
关键词 Brassica oleracea BROCCOLI Anti-gene male sterility
下载PDF
Genetic analysis of fertility restoring genes for AL-type male sterility in wheat 被引量:4
18
作者 Liu Xiaofang Tian Xiaoming +6 位作者 Nie Yingbin Mu Peiyuan Han Xinnian Sang Wei Cui Fengjuan Xu Hongjun Xiang Jishan 《Engineering Sciences》 EI 2013年第5期30-36,共7页
In order to screen molecular markers linked to fertility restoring genes and further improve the breeding efficiency of restorer lines,in this study,wheat varieties 18A,18B and 99AR144-1 were used as experimental mate... In order to screen molecular markers linked to fertility restoring genes and further improve the breeding efficiency of restorer lines,in this study,wheat varieties 18A,18B and 99AR144-1 were used as experimental materials to establish F2 fertility-segregating population. Plant quantitative trait"major gene + polygene mixed model"separation analysis method and simple sequence repeat(SSR) molecular markers were adopted for genetic analysis of four generations,including the parents(P1 and P2),and hybrid(Fl and F2) populations. The results show that AL-type fertility restoring gene is controlled by two pairs of additive-dominant-epistatic genes and additive-dominant polygene;two primers linked to fertility restoring genes were selected by SSR molecular markers, including Xgwm95 on chromosome 2A and Barc61 on chromosome 1B,with the linkage distance of 15.0 cM and 18.0 cM,respectively. Based on verification,these two markers are reliable for distinguishing AL-type wheat sterile lines and restorer lines. 展开更多
关键词 育性恢复基因 小麦品种 遗传分析 AL型 雄性不育 SSR分子标记 多基因控制 分离分析方法
下载PDF
Inheritance of the Male Sterility in a New Photo/Thermo-Sensitive Genie Male Sterile Line B06S of Rice
19
作者 HEHao-hua HUANGWen-xin PENGXiao-song ZHUChang-lan LIUYi-bai 《Rice science》 SCIE 2004年第4期171-176,共6页
The major male sterile genes in a new photo/thermo-sensitive genie male sterile (PTGMS) line B06S of rice were analyzed by the manipulation of mixture distribution theory. The results indicated that a pair of major ma... The major male sterile genes in a new photo/thermo-sensitive genie male sterile (PTGMS) line B06S of rice were analyzed by the manipulation of mixture distribution theory. The results indicated that a pair of major male sterile nuclear genes with large effects were responsible for controlling the male sterility of B06S. 展开更多
关键词 RICE photo/thermo-sensitive genie male sterile line male sterile gene INHERITANCE mixture distribution Expectation and Maximization (EM) algorithm
下载PDF
Elongation of the Uppermost Internode for Changxuan 3S,a Thermo-Sensitive Genic Male Sterile Rice Line
20
作者 XIAO Hui-hai WANG Wen-long 《Rice science》 SCIE 2008年第3期209-214,共6页
Changxuan 3S, a thermo-sensitive genic male sterile (TGMS) rice line with eui gene, is derived from the TGMS rice line Pei'ai 64S by irradiation with 350 Gy of ^60Co γ-ray. To elucidate the uppermost internode elo... Changxuan 3S, a thermo-sensitive genic male sterile (TGMS) rice line with eui gene, is derived from the TGMS rice line Pei'ai 64S by irradiation with 350 Gy of ^60Co γ-ray. To elucidate the uppermost internode elongation of the TGMS line with eui gene, Changxuan 3S and its parent Pei'ai 64S were used to study the effects of temperature on panicle exsertion. At 24℃, the uppermost internode of Changxuan 3S elongated the fastest from the 4^th day before flowering to 0 day (flowering), being 2.1-fold as that of Pei'ai 64S, whereas it elongated slowly during the 12^th day to the 4^th day before flowering and the 1^st to the 3^rd day after flowering. The uppermost internode of Changxuan 3S exserted from the flag leaf sheath at 22℃, 24℃ and 26℃, and the length of elongated uppermost internode increased with the decreasing temperatures. At 28℃, though the panicles of Changxuan 3S were still enclosed in the leaf sheath, the degree of panicle enclosure was significantly lower compared with Pei'ai 64S. Cytological studies on Changxuan 3S showed that the uppermost internode elongation was attributed to the increase of cell number and cell elongation, and the latter was more significant. Moreover, the numbers of outermost and innermost parenchyma cells and the cell length of the uppermost internode reduced with the increasing temperatures. 展开更多
关键词 rice (Oryza sativa) thermo-sensitive genic male sterility elongated uppermost internode gene panicle exsertion temperature
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部