期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
γ-Irradiation Effect:Variation of Photosynthetic Activity of Euglena
1
作者 T·SAKASHITA M·DOI 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2002年第3期261-267,共7页
Objective To study the effects of gamma-ray irradiation on carbon fixation (Specific production rate: SPR), CO2 utilization efficiency (CUE) and electron transfer rate (ETR) in the photosynthetic flagellate Euglena g... Objective To study the effects of gamma-ray irradiation on carbon fixation (Specific production rate: SPR), CO2 utilization efficiency (CUE) and electron transfer rate (ETR) in the photosynthetic flagellate Euglena gracilis strain Z in a dose-response dependent manner. Methods Euglena cells were cultured in an inorganic nutrient medium containing ammonium chloride or proteose peptone. Cells were exposed to gamma-ray at 5 doses (0, 100, 250, 350, 500 Gy for water). Five days after irradiation, three photosynthetic activities were measured. SPR, which is a carbon uptake rate per unit carbon mass, was determined by 13C tracer methodology. CUE was evaluated using a relation of carbon isotope fractionation in Calvin cycle. ETR in photosystem II (PS II) was measured by a chlorophyll fluorescence analysis. Results Even at a dose of 500 Gy, 80 % of ETR of the non-irradiated control (0 Gy) was sustained, while SPR and CUE were about half the level in the non-irradiated control at 500 Gy. Furthermore, the dose response of ETR was considerably different from the others. Conclusion Our findings suggest that not only PS II but also the Calvin cycle in the photosynthetic system is affected by gamma ray irradiation. 展开更多
关键词 Gamma-ray irradiation Euglena gracilis photosynthetic activities
下载PDF
Effects of dense planting patterns on photosynthetic traits of different vertical layers and yield of wheat under different nitrogen rates
2
作者 Cuicun Wang Ke Zhang +9 位作者 Qing Liu Xiufeng Zhang Zhikuan Shi Xue Wang Caili Guo Qiang Cao Yongchao Tian Yan Zhu Xiaojun Liu Weixing Cao 《The Crop Journal》 SCIE CSCD 2024年第2期594-604,共11页
A two-year field experiment was conducted to measure the effects of densification methods on photosynthesis and yield of densely planted wheat.Inter-plant and inter-row distances were used to define ratefixed pattern(... A two-year field experiment was conducted to measure the effects of densification methods on photosynthesis and yield of densely planted wheat.Inter-plant and inter-row distances were used to define ratefixed pattern(RR)and row-fixed pattern(RS)density treatments.Meanwhile,four nitrogen(N)rates(0,144,192,and 240 kg N ha-1,termed N0,N144,N192,and N240)were applied with three densities(225,292.5,and 360×10^(4)plants ha^(-1),termed D225,D292.5,and D360).The wheat canopy was clipped into three equal vertical layers(top,middle,and bottom layers),and their chlorophyll density(Ch D)and photosynthetically active radiation interception(FIPAR)were measured.Results showed that the response of Ch D and FIPAR to N rate,density,and pattern varied with different layers.N rate,density,and pattern had significant interaction effects on Ch D.The maximum values of whole-canopy Ch D in the two seasons appeared in N240 combined with D292.5 and D360 under RR,respectively.Across two growing seasons,FIPAR values of RR were higher than those of RS by 29.37%for the top layer and 5.68%for the middle layer,while lower than those of RS by 20.62%for the bottom layer on average.With a low N supply(N0),grain yield was not significantly affected by density for both patterns.At N240,increasing density significantly increased yield under RR,but D360 of RS significantly decreased yield by 3.72%and 9.00%versus D225 in two seasons,respectively.With an appropriate and sufficient N application,RR increased the yield of densely planted wheat more than RS.Additionally,the maximum yield in two seasons appeared in the combination of D360 with N144 or N192 rather than of D225 with N240 under both patterns,suggesting that dense planting combined with an appropriate N-reduction application is feasible to increase photosynthesis capacity and yield. 展开更多
关键词 Chlorophyll density Densification method Nitrogen photosynthetically active radiation INTERCEPTION WHEAT
下载PDF
Effects of Temperature and Light on Growth Rate and Photosynthetic Characteristics of Sargassum horneri 被引量:3
3
作者 WANG Yong ZHONG Zhihai +3 位作者 QIN Song LI Jialin LI Jingjing LIU Zhengyi 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第1期101-110,共10页
The changing environmental factors exerted great influences on coastal macroalgal communities.To study the responses of the brown seaweed Sargassum horneri to temperature and light,S.horneri was cultured under three t... The changing environmental factors exerted great influences on coastal macroalgal communities.To study the responses of the brown seaweed Sargassum horneri to temperature and light,S.horneri was cultured under three temperatures(20,25 and 30℃)and three light intensities(30,60,and 120μmol photons m-2 s-1)for seven days.The growth rate,chlorophyll a(Chl a)and carotenoids(Car)contents,chlorophyll fluorescence,and photosynthetic oxygen evolution rate were measured.The results show that the highest relative growth rate(RGR),maximal electron transport rate(rETRmax);the net photosynthetic rate(Pn)were observed at the lowest temperature(20℃)and highest light intensity(120μmol photons m-2 s-1);and the RGR and Pn were significantly inhibited by the highest temperature(30℃),especially at the lowest light intensity(30μmol photons m-2 s-1)(P<0.05).Additionally,the highest light intensity enhanced the non-photochemical quenching(NPQ)even under the highest temperature(30℃),indicating that the higher light intensity could induce photo-protection reaction of thalli.These results suggest that the higher temperature and lower light intensity exerted negative influences on S.horneri. 展开更多
关键词 chlorophyll fluorescence parameter ocean warming oxygen electrode photosynthetic activity Sargassum horneri TRANSPARENCY
下载PDF
Effects of Photosynthetically Active Radiation and Air Temperature on CO_2 Uptake of Pterocarpus macrocarpus in the Open Field 被引量:4
4
作者 Sureeporn Kerdkankaew Jesada Luangjame Pojanie Khummongkol 《Agricultural Sciences in China》 CAS CSCD 2005年第4期263-272,共10页
Since trees and plants can absorb CO2, forests are widely regarded as a carbon sink that may control the amount of CO2 in the atmosphere. The CO2 uptake rate of plants is affected by the plant species and environmenta... Since trees and plants can absorb CO2, forests are widely regarded as a carbon sink that may control the amount of CO2 in the atmosphere. The CO2 uptake rate of plants is affected by the plant species and environmental conditions such as photosynthetically active radiation (PAR), temperature, water and nutrient contents. PAR is the most immediate environmental control on photosynthesis while air temperature affects both photorespiration and dark respiration. In the natural condition, PAR and temperature play an important role in net CO2 uptake. The effects of PAR and air temperature on the CO2 uptake of Pterocarpus macrocarpus grown in a natural habitat were studied in the present work. Due to many uncontrollable factors, a simple rectangular hyperbola could not represent the measured data. The data were divided into groups of 2oC intervals; CO2 uptake in each group may then be related to PAR by a rectangular hyperbola function. Using the obtained functions, the effect of PAR was removed from the original data. The PAR-independent CO2 uptake was then related to air temperature. Finally, the effects of PAR (I) and air temperature (Ta) on the CO2 uptake rate (A) were combined as: (-0.0575Ta2+2.6691Ta-23.264)I A= ——————————————— (-0.00766Ta2+0.40666Ta-3.99924) (-4.8794Ta2+227.13Ta-2456.9)+I 展开更多
关键词 Air temperature CO2 uptake rate Empirical model photosynthetically active radiation
下载PDF
Simulation on Distribution of Photosynthetically Active Radiation in Canopy and Optimum Leaf Rolling Index in Rice with Rolling Leaves 被引量:3
5
作者 Hu Ning Lu Chuan-gen +1 位作者 YAO Ke-min Zou Jiang-shi 《Rice science》 SCIE 2009年第3期217-225,共9页
By replacing leaf area index (LAI) with effective leaf area index (ELAI) through introduction of leaf rolling index (LRI), the distributions of photosynthetically active radiation (PAR) in the canopies of thre... By replacing leaf area index (LAI) with effective leaf area index (ELAI) through introduction of leaf rolling index (LRI), the distributions of photosynthetically active radiation (PAR) in the canopies of three hybrid rice combinations, Liangyou E32 with high LRI, Liangyoupeijiu with moderate LRI and Shanyou 63 with non-rolling leaves (normal), were simulated. The model based on ELAI could predict more accurately than that based on LAI. The PAR interception, conversion and utilization efficiency in the three combinations were studied to evaluate their optimal LRI and LAI. The PAR utilization efficiency of Liangyou E32 was lower due to excessive rolling leaves and less ELAI, and that of Shanyou 63 was also lower because of the faulty PAR interception and lower photosynthetic rate and saturation point at lower layer in canopy. Compared with the above two combinations, Liangyoupeijiu showed more appropriate distribution of PAR interception and conversion efficiency in canopy, and higher PAR utilization efficiency. The optimal LRI and LAI for Liangyoupeijiu were 0.11 and 7.6, respectively, which were close to the observed value, 0.11 and 7.9, respectively. However, the optimum LAI was 9.8 for Liangyou E32 and 6.2 for Shanyou 63, larger or smaller than those under the current plant density, which led to lower efficiency of PAR utilization. Besides, the optimum LRI for Liangyou E32 and Shanyou 63 were 0.12 and 0.08, respectively, which were close to the actual LRI for Liangyoupeijiu (0.11). 展开更多
关键词 RICE leaf rolling index effective leaf area index photosynthetically active radiation utilization efficiency population density
下载PDF
Long-Term Trends in Photosynthetically Active Radiation in Beijing 被引量:1
6
作者 胡波 王跃思 刘广仁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第6期1380-1388,共9页
A long-term dataset of photosynthetically active radiation (Qp) is reconstructed from a broadband global solar radiation (Rs) dataset through an all-weather reconstruction model. This method is based on four years... A long-term dataset of photosynthetically active radiation (Qp) is reconstructed from a broadband global solar radiation (Rs) dataset through an all-weather reconstruction model. This method is based on four years' worth of data collected in Beijing. Observation data of Rs and Qp from 2005-2008 are used to investigate the temporal variability of Qp and its dependence on the clearness index and solar zenith angle. A simple and effcient all-weather empirically derived reconstruction model is proposed to reconstruct Qp from Rs. This reconstruction method is found to estimate instantaneous Qp with high accuracy. The annual mean of the daily values of Qp during the period 1958-2005 period is 25.06 mol m-2 d-1. The magnitude of the long-term trend for the annual averaged Qp is presented (-0.19 mol m-2 yr-1 from 1958-1997 and -0.12 mol m-2 yr-1 from 1958-2005). The trend in Qp exhibits sharp decreases in the spring and summer and more gentle decreases in the autumn and winter. 展开更多
关键词 photosynthetically active radiation historical data reconstruction long-term trends
下载PDF
Effects of cloud,atmospheric water vapor,and dust on photosynthetically active radiation and total solar radiation in a Mongolian grassland 被引量:1
7
作者 Tserenpurev BAT-OYUN Masato SHINODA Mitsuru TSUBOn 《Journal of Arid Land》 SCIE 2012年第4期349-356,共8页
Photosynthetically active radiation (PAR) is an important input parameter for estimating plant produc- tivity due to its key role in the growth and development of plants. However, a worldwide routine network for sys... Photosynthetically active radiation (PAR) is an important input parameter for estimating plant produc- tivity due to its key role in the growth and development of plants. However, a worldwide routine network for sys- tematic PAR measurements is not yet established, and PAR is often calculated as a constant fraction of total solar radiation (SR). Although the ratio of PAR to SR (PAR/SR) has been reported from many places, few studies have been performed for dry regions. The present study was therefore carried out in an arid region of Mongolia to obtain PAP-JSR and examine its dependency on sky clearness (the clearness index), water vapor in the atmosphere and aeolian dust. Continuous measurements of PAR and SR were taken every one second using quantum and pyranometer sensors, respectively, and the readings were averaged and recorded at intervals of 30 minutes for a period of 12 months. The lowest monthly mean daily PAR/SR occurred in April (0.420), while the highest ratio was observed in July (0.459). Mean daily PAR/SR during plant growing season (May-August) was estimated to be 0.442, which could be useful for modeling plant productivity in the study area. The annual mean daily PAR/SR (0.435) was lower than the values reported in many previous studies. This difference could be explained with the regional variation in climate: i.e. drier climatic condition in the study area. PAR/SR was negatively correlated with the clearness index (r= -0.36, P〈0.001), but positively with atmospheric water vapor pressure (r=0.47, P〈0.001). The average PAR/SR was significantly lower (P=0.02) on the dusty days compared to the non-dust days. Water vapor in the atmosphere was shown to be the strongest factor in the variation of PAR/SR. This is the first study examining PAR/SR under a semi-arid condition in Mongolia. 展开更多
关键词 clearness index dust storm photosynthetically active radiation total solar radiation water vapor pressure
下载PDF
The Effect of Wide-Range Photosynthetic Active Radiations on Photosynthesis,Growth and Flowering of Rosa sp.and Kalanchoe blossfeldiana 被引量:4
8
作者 Leiv M.Mortensen 《American Journal of Plant Sciences》 2014年第11期1489-1498,共10页
Miniature roses (Rosa sp.) and Kalanchoe blossfeldiana were grown at photon flux densities (PFD) ranging from 60 to 670 μmol·m-2·s-1 (associated with a temperature gradient from 20.0°C to 24.0°C [... Miniature roses (Rosa sp.) and Kalanchoe blossfeldiana were grown at photon flux densities (PFD) ranging from 60 to 670 μmol·m-2·s-1 (associated with a temperature gradient from 20.0°C to 24.0°C [TEMP1]) and from 50 to 370μmol·m-2-s-1 (associated with a temperature gradient from 22.5°C to 26.5°C [TEMP2]). The experiment was conducted in a greenhouse compartment at latitude 59° north in mid-winter. The daily photosynthetic active radiations (PAR) ranged from 4.3 to 48.2 and 3.6 to 26.6 mol·m-2·day-1 in the TEMP1 and TEMP2 treatments, respectively. Time until flowering in miniature roses decreased from about 50 to 35 days in the TEMP1 treatment and from 50 to 25 days in the TEMP2 treatment, when the PFD increased from 50 to 370μmol·m-2·s-1. In Kalanchoe time until flowering was decreased to the same extent (about 15 days) in both temperature treatments when PFD increased from 50 to 370 μmol·m-2·s-1. The number of flowers and the plant dry weight in miniature roses increased up to 300 – 400 μmol·m-2·s-1 PFD (21.6 - 28.8 mol·m-2 day-1 PAR), while flower stem fresh weight and plant dry weight in Kalanchoe increased up to 200 – 300 μmol·m-2·s-1 at TEMP1. Measurements of the diurnal carbon dioxide exchange rates (CER) in daylight in small plant stands of roses in summertime showed that CER was saturated at about 300 μmol·m-2·s-1 PFD at 370 μmol·mol-1 CO2 and at 400 – 500 μmol·m-2·s-1 PFD at 800 μmol·mol-1 CO2. For Kalanchoe similar results were obtained. Increasing the CO2 concentration from 370 to 800 μmol·mol-1 increased the CER in roses (48%) as well in Kalanchoe (69%). It was concluded that 15 to 20 mol·m-2·day-1 combined with about 24°C air temperature and high CO2 concentration will give a very good growth with lot of flowers within a short production time in miniature roses. For Kalanchoe 10 to 15 mol·m-2·day-1 combined with about 20°C and high CO2 produced a similar result. 展开更多
关键词 Ait Temperature Carbon Dioxide Exchange Rate FLOWERING GROWTH Kalanchoe blossfeldiana Miniature Rose Photon Flux Density photosynthetic Active Radiation
下载PDF
The Effect of Photosynthetic Active Radiation and Temperature on Growth and Flowering of Ten Flowering Pot Plant Species
9
作者 Leiv M.Mortensen 《American Journal of Plant Sciences》 2014年第13期1907-1917,共11页
Hibiscus rosa-sinensis, Rosa sp. (miniature roses), Sinningia speciosa, Gerbera hybrida, Kalanchoe blossfeldiana, Hydrangea, Begonia x hiemalis, Calceolaria, Cyclamen persicum and Pelargonium domesticum were grown at ... Hibiscus rosa-sinensis, Rosa sp. (miniature roses), Sinningia speciosa, Gerbera hybrida, Kalanchoe blossfeldiana, Hydrangea, Begonia x hiemalis, Calceolaria, Cyclamen persicum and Pelargonium domesticum were grown at six photon flux densities (85, 130, 170, 215, 255 and 300 μmol·m-2·s-1, PFD) during lighting periods of 20 h·day-1 at three air temperatures (18°C, 21°C and 24°C) in midwinter at latitude 59° north. This corresponded to photosynthetic active radiations (PAR) ranging from 6.1 to 21.6 mol·m-2·day-1. Time until flowering decreased in all species except Cyclamen when the temperature increased from 18°C to 21°C, particularly at lower PFD levels. A further increase in temperature, from 21°C to 24°C, clearly decreased time until flowering in six of the ten tested species. Generally, this represented a reduction in the time until flowering between 20% and 40%. The dry weight of the plants at time of flowering increased up to 170 μmol·m-2·s-1 PFD (12.2 mol·m-2·day-1 PAR) in Hibiscus, miniature rose, Kalanchoe and Pelargonium, while the dry weight reached a maximum at 85 to 130 μmol·m-2·s-1 PFD mol·m-2·day-1 (6.1 to 9.4 mol·m-2·day-1)in the other species. Based on the present results a PAR level of 6 to 8 mol m-2·day-1 is recommended for Calceolaria and Cyclamen, of 8 to 10 mol·m-2·day-1 for Sinningia, Gerbera, Kalanchoe, Hydrangea and Begonia, of 10 to 12 mol·m-2·day-1 for Pelargonium and of 12 to 15 mol·m-2 day-1 for Hibiscus and miniature roses. 展开更多
关键词 Air Temperature FLOWERING GROWTH Photon Flux Density(PFD) photosynthetic Active Radiation(PAR) Pot Plants
下载PDF
Improving GPP estimates by partitioning green APAR from total APAR in two deciduous forest sites
10
作者 Siyuan Chen Liangyun Liu +1 位作者 Lichun Sui Xinjie Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第4期915-927,共13页
Non-photosynthetic components within a forest ecosystem account for a large proportion of the canopy but are not involved in photosynthesis.Therefore,the accuracy of gross primary production(GPP)estimates is expected ... Non-photosynthetic components within a forest ecosystem account for a large proportion of the canopy but are not involved in photosynthesis.Therefore,the accuracy of gross primary production(GPP)estimates is expected to improve by removing these components.However,their infl uence in GPP estimations has not been quantitatively evaluated for deciduous forests.Several vegetation indices have been used recently to estimate the fraction of photosynthetically active radiation absorbed by photosynthetic components(FAPAR_(green))for partitioning APAR green(photosynthetically active radiation absorbed by photosynthetic components).In this study,the enhanced vegetation index(EVI)estimated FAPAR_(green)and to separate the photosynthetically active radiation absorbed by photosynthetic components(APAR green)from total APAR observations(APAR_(total))at two deciduous forest sites.The eddy covariance-light use effi ciency(EC-LUE)algorithm was employed to evaluate the infl uence of non-photosynthetic components and to test the performance of APAR green in GPP estimation.The results show that the infl uence of non-photosynthetic components have a seasonal pattern at deciduous forest sites,large diff erences are observed with normalized root mean square error(RMSE*)values of APAR green-based GPP and APAR_(total)-based GPP between tower-based GPP during the early and end stages,while slight diff erences occurred during peak growth seasons.In addition,daily GPP estimation was significantly improved using the APAR green-based method,giving a higher coeffi cient of determination and lower normalized root mean square error against the GPP estimated by the APAR_(total)-based method.The results demonstrate the signifi cance of partitioning APAR green from APAR_(total)for accurate GPP estimation in deciduous forests. 展开更多
关键词 Gross primary production Absorbed photosynthetically active radiation photosynthetic component Vegetation index AMERIFLUX European fl uxes database
下载PDF
Effect of Methanol on Photosynthesis and Chlorophyll Fluorescence of Flag Leaves of Winter Wheat 被引量:8
11
作者 ZHENG Yue-jin YANG Yue-qin LIANG Shan-shan YI Xian-feng 《Agricultural Sciences in China》 CAS CSCD 2008年第4期432-437,共6页
Photosynthesis and chlorophyll a fluorescence parameters, photochemical efficiency of PS II (Fv/Fm), photochemical quenching of PS II (qP), nonphotochemical quenching of PS II (NPQ), maximum activity of PS II (... Photosynthesis and chlorophyll a fluorescence parameters, photochemical efficiency of PS II (Fv/Fm), photochemical quenching of PS II (qP), nonphotochemical quenching of PS II (NPQ), maximum activity of PS II (Fv/Fo) as well as electron transport rate (ETR), and quantum yield of PS II (ФPS II) were measured on flag leaves of the winter wheat treated by methanol at different concentrations. The results revealed that photosynthesis was greatly improved by methanol, as indicated by higher photosynthetic rates and stomatal conductance. The enhancement effect of methanol on photosynthesis was maintained for 3-4 days. Different methanol concentration treatments also increased intercellular CO2 concentration and transpiration rates. No significant decline was found in Fv/Fm, Fv/Fo, and ФPS II, which revealed no photoinhibition during methanol application in different methanol concentrations. Methanol showing no apparent inhibitory effects indicated higher potential photosynthetic capacity of flag leaves of winter wheat. However, the increase in photosynthesis was not followed by an increase in the photosynthetic activity (Fv/Fm), and fluorescence parameters did not indicate an improvement in intercellular CO2 concentration and PS II photochemical efficiency compared with the control, thereby encouraging us to propose that lower leaf temperatures caused by applied methanol would reduce both dark respiration and photorespiration (most importantly), thus, increasing net CO2 uptake and photosynthetic rates. 展开更多
关键词 METHANOL photosynthetic activity chlorophyll fluorescence flag leaf winter wheat
下载PDF
金矮生苹果蒸腾速率对光照和水分的响应研究(英文) 被引量:1
12
作者 王克勤 杨晓晖 《Forestry Studies in China》 CAS 2001年第2期18-25,共8页
We tested the transpiration rate ( Tr ) of seven\|year\|old field and two\|year\|old potted Malus pumila cv.Goldspur under different conditions of illumination and soil water. The results showed that the interre... We tested the transpiration rate ( Tr ) of seven\|year\|old field and two\|year\|old potted Malus pumila cv.Goldspur under different conditions of illumination and soil water. The results showed that the interrelationship between Tr of Malus pumila cv.Goldspur and illumination and soil water content ( SWC ) was quite remarkable. Tr increased with the increase of light intensity and SWC . However, when one of the environmental stresses of illumination and water existed, the improvement of the other condition couldn't make Tr rise greatly. Only when SWC was higher than 11%, which arrived at over 55% of the field content ( FC ), or the photosynthetic active radiation ( PAR ) higher than 400?μmol·s -1 m -2 , Tr could rise greatly with the increase of PAR or SWC . But when SWC was higher than 15%, which reached over 75% of FC or PAR higher than 1?000?μmol·s -1 ·m -2 , Tr would not change a lot with the change of PAR or SWC . That PAR and SWC influenced the magnitude of stomatic resistance( RS ) and leaf water potential ( Ψ l) was the basic reason for the Tr responded to them. Light stress reduced the open degree of stomas, so when severe light stress existed ( PAR <100?μmol·s -1 ·m -2 ), RS was larger ( RS >2 0?s·cm -1 ), which led to the decrease of Tr(Tr <5?μgH 2O·s -1 ·cm -2 ). When severe water stress existed( SWC <11% and<55% of FC and soil water potential Ψ ws <-1 15?MPa), RS was higher than 4 00?s·cm -1 and Ψ l lower than -2 10?MPa, which led to Tr lower than 11?μgH 2O·s -1 ·cm -2 . When soil water was adequate( SWC >15% amd over 75% of FC , and Ψ ws >-0 50?MPa), RS was lower than 2 00?s·cm -1 , Ψ l higher than -1 65?MPa and Tr would be higher than 15?μgH 2O·s -1 ·m -2 . The range of SWC , 11%~15%, which accounted for 55% to 75% of FC , and correspond RS (2 00~4 00?s·cm -1 ) were the turning area, where the variable curve of Tr transited from a variable trend to another variable one. It could be considered as the range to control soil water. 展开更多
关键词 transpiration rate irradiation intensity(photosynthetically active radiance) soil moisture
下载PDF
Cowpea NAC1/NAC2 transcription factors improve growth and tolerance to drought and heat in transgenic cowpea through combined activation of photosynthetic and antioxidant mechanisms 被引量:5
13
作者 Richa Srivastava Yuriko Kobayashi +1 位作者 Hiroyuki Koyama Lingaraj Sahoo 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2023年第1期25-44,共20页
NAC(NAM/ATAF1/2/CUC2)transcription factors are central switches of growth and stress responses in plants.However,unpredictable interspecies conservation of function and regulatory targets makes the well-studied NAC or... NAC(NAM/ATAF1/2/CUC2)transcription factors are central switches of growth and stress responses in plants.However,unpredictable interspecies conservation of function and regulatory targets makes the well-studied NAC orthologs inapt for pulse engineering.The knowledge of suitable NAC candidates in hardy pulses like cowpea(Vigna unguiculata(L.)Walp.)is still in infancy,hence warrants immediate biotechnological intervention.Here,we showed that overexpression of two native NAC genes(VuNAC1and VuNAC2)promoted germinative,vegetative,and reproductive growth and conferred multiple abiotic stress tolerance in a commercial cowpea variety.The transgenic lines displayed increased leaf area,thicker stem,nodule-rich denser root system,early flowering,higher pod production(~3.2-fold and~2.1-fold),and greater seed weight(10.3%and 6.0%).In contrast,transient suppression of VuNAC1/2 caused severe growth retardation and flower inhibition.The overexpressor lines showed remarkable tolerance to major yielddeclining terminal stresses,such as drought,salinity,heat,and cold,and recovered growth and seed production by boosting photosynthetic activity,water use efficiency,membrane integrity,Na^(+)/K^(+)homeostasis,and antioxidant activity.The comparative transcriptome study indicated consolidated activation of genes involved in chloroplast development,photosynthetic complexes,cell division and expansion,cell wall biogenesis,nutrient uptake and metabolism,stress response,abscisic acid,and auxin signaling.Unlike their orthologs,VuNAC1/2 direct synergistic transcriptional tuning of stress and developmental signaling to avoid unwanted trade-offs.Their overexpression governs the favorable interplay of photosynthesis and reactive oxygen species regulation to improve stress recovery,nutritional sufficiency,biomass,and production.This unconventional balance of strong stress tolerance and agronomic quality is useful for translational crop research and molecular breeding of pulses. 展开更多
关键词 COWPEA enhanced photosynthetic activity improved growth improved yield legume genetic engineering multiple stress tolerance NAC transcription factor VuNAC
原文传递
Exploration of Distinct Physiological and Biochemical Alterations in Chickpea (Cicer arietinum L.) under Varying Organic Materials, Drought and Proline Application
14
作者 Uttam Kumer Sarker A.N.Md.Anamul Karim +7 位作者 F.M.Jamil Uddin Ahmed Khairul Hasan Najrul Islam Md.Romij Uddin Md.Alamgir Hossain Sabry Hassan Mohamed M.Hassan Mahmoud F.K.Soliman 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第12期2775-2789,共15页
Chickpea yield is decreasing day by day due to drought stress,which could be an immense risk for future food security in developing countries.Management practices could be the most excellent approach to diminish loss ... Chickpea yield is decreasing day by day due to drought stress,which could be an immense risk for future food security in developing countries.Management practices could be the most excellent approach to diminish loss due to this abiotic factor.The current research work was designed to explore the tolerance reaction of chickpea genotypes against management practices,through morphological and biochemical parameters and evaluate yield performance across drought prone location of Bangladesh.Four genotypes BD-6048,BD-6045,BD-6090,BD-6092 and eight management practices,e.g.,severe water stress(SWS),i.e.,without irrigation,10 cm thick mulching with rice straw(MRS),10 cm thick mulching with water hyacinth(MWH),organic amendment through compost(OAC)@3 t ha−1,organic amendment through cow dung@5 t ha−1(OACD),organic amendment through poultry manure@2 t ha−1(OAPM),inorganic amendment through proline application(IAPA)as foliar spray and 16 h hydro-priming(HP).The study revealed that the genotypes BD-6048 showed excellent performance because of the highest chlorophyll,carotenoids,phosphorus,potassium,proline and protein content.The highest pod number plant−1 also increased seed yield in BD-6048.Considering management practices,IAPA increased relative water content,carotenoids,leaf phosphorus and potassium compared to other management practices and severe water stress.Finally,BD-6084 was selected as best genotype because of a significant increase in chlorophyll a and b,carotenoids,and relative water content with IAPA.Identified top performing genotypes can be used for releasing variety and cultivated for sustainable production in drought prone area of Bangladesh. 展开更多
关键词 Hydro-priming grain yield organic amendments photosynthetic activity
下载PDF
Microclimatic characteristics of the Heihe oasis in the hyperarid zone of China 被引量:4
15
作者 FENG Qi SI Jianhua ZHANG Yanwu YAO Jiming LIU Wei SU Yonghong 《Journal of Geographical Sciences》 SCIE CSCD 2006年第1期34-44,共11页
The microclimate of a desert oasis in hyperarid zone of China was monitored using micrometeorological methods and compared with those of areas adjacent to forested land. Differences in ground-level photosynthetically ... The microclimate of a desert oasis in hyperarid zone of China was monitored using micrometeorological methods and compared with those of areas adjacent to forested land. Differences in ground-level photosynthetically active radiation (PAR) on clear, cloudy and dust storm days and their subtending causes are analysed and discussed. Desert oases serve the ecological functions of altering solar radiation, adjusting near-ground and land surface temperatures, reducing soil temperature differences, lowering wind velocity, and increasing soil and atmospheric humidity. The total solar radiation in the interior of the oasis was roughly half of that outside a forest canopy. During the growing season, air temperatures in Populus euphratica Oliv. (poplar) and Tamarix ramosissima Ledeb. (tamarisk) forests were 1.62℃ and 0.83 ℃ lower respectively than those in the areas around the forests. Furthermore, the miler the forest cover, the greater the temperature drops; air temperatures in the upper storey were greater than those in the lower storey, i.e., air temperature rose with increasing height. Over the growing season, the relative humidities of the air in the poplar and tamarisk forests were 8.5% and 4.2% higher respectively than those in areas around the forests. Mean wind velocity in poplar-forested lands was 0.33 m·s^-1, 2.31 m·s^-1 lower than that in the surrounding area. During dust storm days the PAR was significantly lower than that on cloudy or clear days, when it was high and varied in an irregular manner. 展开更多
关键词 hyperarid zone desert oasis photosynthetically active radiation (PAR) MICROCLIMATE
下载PDF
Influence of Sea Surface Temperature on Outbreak of Ulva prolifera in the Southern Yellow Sea,China 被引量:3
16
作者 ZHANG Guangzong WU Mengquan +5 位作者 ZHANG Anding XING Qianguo ZHOU Min ZHAO Deheng SONGXiaodong YU Zhilu 《Chinese Geographical Science》 SCIE CSCD 2020年第4期631-642,共12页
In this study,using Moderate Resolution Imaging Spectroradiometer(MODIS)satellite images and environmental satellite CCD images,the spatio-temporal distribution of Ulva prolifera in the southern Yellow Sea during the ... In this study,using Moderate Resolution Imaging Spectroradiometer(MODIS)satellite images and environmental satellite CCD images,the spatio-temporal distribution of Ulva prolifera in the southern Yellow Sea during the period of 2011–2018 was extracted and combined with MODIS Level3 Photosynthetically Active Radiation(PAR)product data and Earth System Research Laboratory(ESRL)Sea Surface Temperature(SST)data to analyze their influences on the growth and outbreak of Ulva prolifera.The following conclusions were drawn:1)comprehensive analysis of Ulva prolifera distribution during the eight-year period revealed that the coverage area of Ulva prolifera typically exhibited a gradually increasing trend.The coverage area of Ulva prolifera reached a maximum of approximately 1714.21 km^2 during the eight-year period in late June 2015.The area affected by Ulva prolifera fluctuated.In mid-July 2014,the area affected by Ulva prolifera reached a maximum of approximately 39020.63 km^2.2)The average growth rate of Ulva prolifera was positive in May and June but negative in July.During the outbreak of Ulva prolifera,the SST in the southern Yellow Sea tended to increase each month.The SST anomaly and average growth rate of Ulva prolifera were positively correlated in May(R^2=0.62),but not significantly correlated in June or July.3)The variation trends of PAR and SST were approximately the same,and the PAR during this time period maintained a range of 40–50 mol/(m^2·d),providing sufficient illumination for the growth and outbreak of Ulva prolifera.In addition,the abundant nutrients and suitable temperature in the sea area near northern Jiangsu shoal resulted in a high growth rate of Ulva prolifera in May.In summary,the outbreak of Ulva prolifera was closely related to the environmental factors including SST,nutrients,and PAR.Sufficient nutrients and suitable temperatures resulted in a fast growth rate of Ulva prolifera.However,under poor nutrient conditions,even more suitable temperatures were not sufficient to trigger an outbreak of Ulva prolifera. 展开更多
关键词 Sea Surface Temperature(SST) photosynthetically Active Radiation(PAR) Ulva prolifera MODIS(Moderate Resolution Imaging Spectroradiometer) the southern Yellow Sea
下载PDF
Tropical forest canopies and their relationships with climate and disturbance: results from a global dataset of consistent field-based measurements 被引量:1
17
作者 marion pfeifer alemu gonsamo +26 位作者 william woodgate luis cayuela andrew r.marshall alicia ledo timothy c.e.paine rob marchant andrew burt kim calders colin courtney-mustaphi aida cuni-sanchez nicolas j.deere dereje denu jose gonzalez de tanago robin hayward alvaro lau manuel j.macía pieter i.olivier petri pellikka hamidu seki deo shirima rebecca trevithick beatrice wedeux charlotte wheeler pantaleo k.t.munishi thomas martin abdul mustari philip j.platts 《Forest Ecosystems》 SCIE CSCD 2018年第1期77-90,共14页
Background: Canopy structure, defined by leaf area index (LAI), fractional vegetation cover (FCover) and fraction of absorbed photosynthetically active radiation (fAPAR), regulates a wide range of forest functi... Background: Canopy structure, defined by leaf area index (LAI), fractional vegetation cover (FCover) and fraction of absorbed photosynthetically active radiation (fAPAR), regulates a wide range of forest functions and ecosystem services. Spatially consistent field-measurements of canopy structure are however lacking, particularly for the tropics. Methods: Here, we introduce the Global LAI database: a global dataset of field-based canopy structure measurements spanning tropical forests in four continents (Africa, Asia, Australia and the Americas). We use these measurements to test for climate dependencies within and across continents, and to test for the potential of anthropogenic disturbance and forest protection to modulate those dependences. Results: Using data collected from 887 tropical forest plots, we show that maximum water deficit, defined across the most arid months of the year, is an important predictor of canopy structure, with all three canopy attributes declining significantly with increasing water deficit. Canopy attributes also increase with minimum temperature, and with the protection of forests according to both active (within protected areas) and passive measures (through topography). Once protection and continent effects are accounted for, other anthropogenic measures (e.g. human population) do not improve the model. Conclusions: We conclude that canopy structure in the tropics is primarily a consequence of forest adaptation to the maximum water deficits historically experienced within a given region. Climate change, and in particular changes in drought regimes may thus affect forest structure and function, but forest protection may offer some resilience against this effect. 展开更多
关键词 Leaf area index Fractional vegetation cover Fraction of absorbed photosynthetically active radiation Human population pressure Protected areas DROUGHT Climate change
下载PDF
Direct Radiative Effect of Aerosols on Net Ecosystem Carbon Exchange in the Pearl River Delta Region 被引量:1
18
作者 麦博儒 邓雪娇 +1 位作者 刘霞 尹淑娴 《Journal of Tropical Meteorology》 SCIE 2021年第3期272-281,共10页
The environmental impact of aerosols is currently a hot issue that has received worldwide attention. Lacking simultaneous observations of aerosols and carbon flux, the understanding of the aerosol radiative effect of ... The environmental impact of aerosols is currently a hot issue that has received worldwide attention. Lacking simultaneous observations of aerosols and carbon flux, the understanding of the aerosol radiative effect of urban agglomeration on the net ecosystem carbon exchange(NEE) is restricted. In 2009-2010, an observation of the aerosol optical property and CO_(2) flux was carried out at the Dongguan Meteorological Bureau Station(DMBS) using a sun photometer and eddy covariance systems. The different components of photosynthetically active radiation(PAR),including global PAR(GPAR), direct PAR(DPAR), and scattered PAR(FPAR), were calculated using the Santa Barbara DISORT Atmospheric Radiative Transfer(SBDART) model. The effects of PAR on the NEE between land-atmosphere systems were investigated. The results demonstrated that during the study period the aerosol optical depth(AOD)reduced the DPAR by 519.28±232.89 μmol photons · m^(-2)s^(-1), but increased the FPAR by 324.93±169.85μmol photons ·m^(-2)s^(-1),ultimately leading to 194.34±92.62 μmol photons · m^(-2)s^(-1);decrease in the GPAR. All the PARs(including GPAR,DPAR, and FPAR) resulted in increases in the NEE(improved carbon absorption), but the FPAR has the strongest effect with the light use efficiency(LUE) being 1.12 times the values for the DPAR. The absorption of DPAR by the vegetation exhibited photo-inhibition in the radiation intensity > 600 photons · m^(-2)s^(-1);in contrast, the absorptions of FPAR did not exhibit apparent photo-inhibition. Compared with the FPAR caused by aerosols, the DPAR was not the primary factor affecting the NEE. On the contrary, the increase in AOD significantly increased the FPAR, enhancing the LUE of vegetation ecosystems and finally promoting the photosynthetic CO_(2) absorption. 展开更多
关键词 atmospheric aerosol photosynthetically active radiation net ecosystem carbon exchange
下载PDF
The Effect of Photon Flux Density and Lighting Period on Growth,Flowering,Powdery Mildew and Water Relations of Miniature Roses 被引量:1
19
作者 Leiv M.Mortensen 《American Journal of Plant Sciences》 2014年第13期1813-1818,共6页
Miniature roses (Rosa sp.) were grown at 100 and 150 μmol m-2·s-1 photon flux densities (PFD) with 16, 20 and 24 h·day-1 lighting periods (LP) in a greenhouse compartment in midwinter at latitude 59° n... Miniature roses (Rosa sp.) were grown at 100 and 150 μmol m-2·s-1 photon flux densities (PFD) with 16, 20 and 24 h·day-1 lighting periods (LP) in a greenhouse compartment in midwinter at latitude 59° north. The study included 10 different treatments and six rose cultivars, altogether 900 plants. The 16 and 20 h LP were applied with or without a dark period of 8 and 4 h·day-1, respectively, by timing the LP in relation to daylight that lasted for 7 - 8 h. Number of days until flowering decreased with an increase in PFD and in LP up to 24 day-1 and was unaffected by the timing of the 16 and 20 h·day-1 LP. Number of flowers and plant dry weight increased 20% to 30% by increasing the PFD. Plant dry weight increased by increasing the LP from 16 to 20 h·day-1 (about 25%), but no effect was found with a further increase to 24 h·day-1. Mean growth rate until flowering increased 30% to 40% by increasing the PFD or by increasing the LP from 16 to 20 h day-1, while little effect was found by a further increase to 24 h·day-1. Increasing the photosynthetic active radiation (PAR) by increasing the LP from 16 to 20 h·day-1 increased the growth rate more than increasing the PFD did. Three of the cultivars were tested for water loss after the detachment of some leaves. Leaves that had developed without a dark period showed a considerably higher water loss than the treatments that included a dark period of 4 or 8 h·day-1. The keeping quality at indoor conditions, however, was unaffected by the treatment due to sufficient watering. Powdery mildew developed significantly more on plants grown with a dark period of 8 h as compared with the other treatments. It was concluded that 20 h·day-1 LP including a dark period of 4 h·day-1 and a PFD of at least 150 μmol·m-2·s-1 should be applied to miniature roses during the winter months in order to effectively produce miniature pot roses with a high quality. 展开更多
关键词 FLOWERING GROWTH Keeping Life Leaf Water Loss Lighting Period Miniature Rose Photon Flux Density(PFD) photosynthetic Active Radiation(PAR) Powdery Mildew
下载PDF
Group planting of cherry (Prunus avium L.) fosters growth and tree quality is superior to conventional row planting in Germany
20
作者 Somidh Saha 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第4期1088-1099,共12页
Wild cherry trees produce high-quality timber and provide multiple ecosystem services. However, planting and tending cherry stands in conventional rows are too costly. Therefore, low density group planting was trialle... Wild cherry trees produce high-quality timber and provide multiple ecosystem services. However, planting and tending cherry stands in conventional rows are too costly. Therefore, low density group planting was trialled as an alternative to row planting. The mortality, growth, and quality of planted cherry trees were compared between the group and row planting. The influence of neighbourhood competition and light availability on growth and quality was studied. The group and row planting of cherry trees were established at a wind-thrown site in southwestern Germany in the year 2000. In group planting, five cherry seedlings and seven lime seedlings (Tilia cordata Mill.) were planted with a 1 x 1 m spacing. In total, 60 groups were planted per hectare with a 13 × 13 m spacing. In contrast, 3300 seedlings (2475 cherries and 825 limes) were planted per hectare in row planting with a 3 × 1 m spacing. Ten groups and plots (10 × 10 m) were randomly established in group and row planting stand, respectively. The survival rate, stability (height to diameter ratio), diameter, and height growth were significantly higher in group planting. In the group plantings,40.5% of cherry trees had straight stems and 13.5% had a monopodial crown compared with 15% with straight stems and 2% with a monopodial crown in row planting. The proportion of dominant cherry trees in canopy was 49% in groups compared with 22% in rows. The length of branch free bole was significantly higher in cherries planted in groups than those grown in rows. Intra- and interspecific competition reduced the growth and stability of cherry trees in row planting, but not in group planting. Light availability did not cause any significant effects on growth and quality between group and row planting. This first study on cherry group planting indicates that the survival rate, growth, and tree quality were higher in groups than in rows at this early development stage. The competition by naturally born seedlings was an important reason for the difference in performance between group and row planting. This study will encourage forest practitioners to establish more cherry group planting trials on multiple sites to test the effectiveness of this alternative technique as a tool of regeneration and restoration silviculture. 展开更多
关键词 Group planting Tree growth Tree quality Interspecific competition Intraspecific competition photosynthetically active photon flux density Total sitefactor
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部