期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
光合细菌的应用现状与前景 被引量:19
1
作者 何剑丹 龙炳清 +2 位作者 刘长根 蒋悦 史凯 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第1期114-116,共3页
综述了近年来光合细菌在水产业、畜禽养殖业、有机废水处理、农业和天然色素几个方面的研究和应用现状,指出对光合细菌的研究和应用是21世纪最具发展前景的领域之一,并对其应用中存在的问题及发展趋势进行了评述.
关键词 光合细菌 应用 前景
下载PDF
Improving Geese Production Performance in “Goose-Fish” Production System by Competitive Reduction of Pathogenic Bacteria in Pond Water 被引量:22
2
作者 YANG Xi-wen LIU Li +3 位作者 JIANG Dan-li WANG Cong-li SUN Ai-dong SHI Zhen-dan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第6期993-1001,共9页
This study investigated whether competitive reduction of pathogenic bacteria growth in pond water alleviates lipopolysaccharide (LPS) contamination and improves geese production performances in the "goose-fish" pr... This study investigated whether competitive reduction of pathogenic bacteria growth in pond water alleviates lipopolysaccharide (LPS) contamination and improves geese production performances in the "goose-fish" production system, thereby providing the potential for an improved technique for ecological water fowl production. In the first experiment, 240 Magang goslings of 15-d age were randomly and equally allocated into 16 "yard and pond" pens using a 2-2 factorial design with 4 replications per treatment. In the 55-d experimental period, the goslings received 2 main treatments: supplementation of Bacillus subtilis spores in the feed and addition of photosynthetic bacteria (PSB) to the pond water. Both B. subtilis spores and PSB treatments significantly suppressed water counts of Gram-negative bacteria Escherichia coli, Salmonella and Shigella, and LPS concentrations in pond water and in gosling blood (P〈0.05). As the result, the two treatments significantly improved gosling weight gain and carcass quality, marked by enhanced breast and leg muscle percentages and reduced subcutaneous fat proportions (P〈0.05). Moreover, the improved effects of B. subtilis spores and PSB treatments were additive. In the second experiment, 1 160 adult geese were induced to start egg laying from May throughout the summer months. The geese were separated equally into control and experimental flocks to fit into 2 integration production units, with a density of 1 bird m-2 meter on pond water. Experimental flock geese were treated with B. subtilis spores in feed and PSB in the pond water for the duration of the study. Such treatment combination significantly depressed the growth of E. coli, Salmonella and Shigella in the pond water and reduced LPS concentrations both in pond water and in geese blood (P〈0.01). As a result, egg fertility, fertile and set egg hatchabilities were all improved in the treated flock. Results from both growing goslings and breeding geese demonstrated that water bacteria pollution can be competitively reduced by supplementation with B. subtilis spores via the feed and addition of PSB in pond water, each of which reduces LPS contamination to geese and improves production performances. Micro- ecological agents such as B. subtilis spores and PSB improve water quality and provide a simple ecological technique for the "water fowl-fish" integrative production system. 展开更多
关键词 bacteria growth LIPOPOLYSACCHARIDE geese production performance B. subtilis spores photosyntheticbacteria
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部