The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs ...The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs of slowing down,with solar photovoltaic(PV)panels being the primary technology for converting sunlight into electricity.Advancements are continuously being made to ensure cost-effectiveness,high-performing cells,extended lifespans,and minimal maintenance requirements.This study focuses on identifying suitable locations for implementing solar PVsystems at theUniversityMalaysia PahangAl SultanAbdullah(UMPSA),Pekan campus including buildings,water bodies,and forest areas.A combined technical and economic analysis is conducted using Helioscope for simulations and the Photovoltaic Geographic Information System(PVGIS)for economic considerations.Helioscope simulation examine case studies for PV installations in forested areas,lakes,and buildings.This approach provides comprehensive estimations of solar photovoltaic potential,annual cost savings,electricity costs,and greenhouse gas emission reductions.Based on land coverage percentages,Floatovoltaics have a large solar PV capacity of 32.3 Megawatts(MW);forest-based photovoltaics(Forestvoltaics)achieve maximum yearly savings of RM 37,268,550;and Building Applied Photovoltaics(BAPV)have the lowest CO2 emissions and net carbon dioxide reduction compared to other plant sizes.It also clarifies the purpose of using both software tools to achieve a comprehensive understanding of both technical and economic aspects.展开更多
In this paper,a detailed model of a photovoltaic(PV)panel is used to study the accumulation of dust on solar panels.The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass,as ...In this paper,a detailed model of a photovoltaic(PV)panel is used to study the accumulation of dust on solar panels.The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass,as it increases the reflection of light by particles.This phenomenon,commonly known as the“soiling effect”,presents a significant challenge to PV systems on a global scale.Two basic models of the equivalent circuits of a solar cell can be found,namely the single-diode model and the two-diode models.The limitation of efficiency data in manufacturers’datasheets has encouraged us to develop an equivalent electrical model that is efficient under dust conditions,integrated with optical transmittance considerations to investigate the soiling effect.The proposed approach is based on the use of experimental current-voltage(I-V)characteristics with simulated data using MATLAB/Simulink.Our research outcomes underscores the feasibility of accurately quantifying the reduction in energy production resulting from soiling by assessing the optical transmittance of accumulated dust on the surface of PV glass.展开更多
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ...The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.展开更多
This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV tech...This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV technology grows, the need for effective fault detection strategies becomes increasingly paramount to maximize energy output and minimize operational downtimes of solar power systems. These approaches include the use of machine learning and deep learning methodologies to be able to detect the identified faults in PV technology. Here, we delve into how machine learning models, specifically kernel-based extreme learning machines and support vector machines, trained on current-voltage characteristic (I-V curve) data, provide information on fault identification. We explore deep learning approaches by taking models like EfficientNet-B0, which looks at infrared images of solar panels to detect subtle defects not visible to the human eye. We highlight the utilization of advanced image processing techniques and algorithms to exploit aerial imagery data, from Unmanned Aerial Vehicles (UAVs), for inspecting large solar installations. Some other techniques like DeepLabV3 , Feature Pyramid Networks (FPN), and U-Net will be detailed as such tools enable effective segmentation and anomaly detection in aerial panel images. Finally, we discuss implications of these technologies on labor costs, fault detection precision, and sustainability of PV installations.展开更多
Based on the artificial intelligence algorithm of RetinaNet,we propose the Ghost-RetinaNet in this paper,a fast shadow detection method for photovoltaic panels,to solve the problems of extreme target density,large ove...Based on the artificial intelligence algorithm of RetinaNet,we propose the Ghost-RetinaNet in this paper,a fast shadow detection method for photovoltaic panels,to solve the problems of extreme target density,large overlap,high cost and poor real-time performance in photovoltaic panel shadow detection.Firstly,the Ghost CSP module based on Cross Stage Partial(CSP)is adopted in feature extraction network to improve the accuracy and detection speed.Based on extracted features,recursive feature fusion structure ismentioned to enhance the feature information of all objects.We introduce the SiLU activation function and CIoU Loss to increase the learning and generalization ability of the network and improve the positioning accuracy of the bounding box regression,respectively.Finally,in order to achieve fast detection,the Ghost strategy is chosen to lighten the size of the algorithm.The results of the experiment show that the average detection accuracy(mAP)of the algorithm can reach up to 97.17%,the model size is only 8.75 MB and the detection speed is highly up to 50.8 Frame per second(FPS),which can meet the requirements of real-time detection speed and accuracy of photovoltaic panels in the practical environment.The realization of the algorithm also provides new research methods and ideas for fault detection in the photovoltaic power generation system.展开更多
The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices...The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.展开更多
Photovoltaic(PV)boards are a perfect way to create eco-friendly power from daylight.The defects in the PV panels are caused by various conditions;such defective PV panels need continuous monitoring.The recent developm...Photovoltaic(PV)boards are a perfect way to create eco-friendly power from daylight.The defects in the PV panels are caused by various conditions;such defective PV panels need continuous monitoring.The recent development of PV panel monitoring systems provides a modest and viable approach to monitoring and managing the condition of the PV plants.In general,conventional procedures are used to identify the faulty modules earlier and to avoid declines in power generation.The existing deep learning architectures provide the required output to predict the faulty PV panels with less accuracy and a more time-consuming process.To increase the accuracy and to reduce the processing time,a new Convolutional Neural Network(CNN)architecture is required.Hence,in the present work,a new Real-time Multi Variant Deep learning Model(RMVDM)architecture is proposed,and it extracts the image features and classifies the defects in PV panels quickly with high accuracy.The defects that arise in the PV panels are identified by the CNN based RMVDM using RGB images.The biggest difference between CNN and its predecessors is that CNN automatically extracts the image features without any help from a person.The technique is quantitatively assessed and compared with existing faulty PV board identification approaches on the large real-time dataset.The results show that 98%of the accuracy and recall values in the fault detection and classification process.展开更多
The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Th...The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.展开更多
The exploitation of renewable energy has become a pressing task due to climate change and the recent energy crisis caused by regional conflicts.This has further accelerated the rapid development of the global photovol...The exploitation of renewable energy has become a pressing task due to climate change and the recent energy crisis caused by regional conflicts.This has further accelerated the rapid development of the global photovoltaic(PV)market,thereby making the management and maintenance of solar photovoltaic(SPV)panels a new area of business as neglecting it may lead to significant financial losses and failure to combat climate change and the energy crisis.SPV panels face many risks that may degrade their power generation performance,damage their structures,or even cause the complete loss of their power generation capacity during their long service life.It is hoped that these problems can be identified and resolved as soon as possible.However,this is a challenging task as a solar power plant(SPP)may contain hundreds even thousands of SPV panels.To provide a potential solution for this issue,a smart drone-based SPV panel condition monitoring(CM)technique has been studied in this paper.In the study,the U-Net neural network(UNNN),which is ideal for undertaking image segmentation tasks and good at handling small sample size problem,is adopted to automatically create mask images from the collected true color thermal infrared images.The support vector machine(SVM),which performs very well in highdimensional feature spaces and is therefore good at image recognition,is employed to classifying the mask images generated by the UNNN.The research result has shown that with the aid of the UNNN and SVM,the thermal infrared images that are remotely collected by drones from SPPs can be automatically and effectively processed,analyzed,and classified with reasonable accuracy(over 80%).Particularly,the mask images produced by the trained UNNN,which contain less interference items than true color thermal infrared images,significantly benefit the assessing accuracy of the health state of SPV panels.It is anticipated that the technical approach presented in this paper will serve as an inspiration for the exploration of more advanced and dependable smart asset management techniques within the solar power industry.展开更多
A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there ...A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.展开更多
The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable ...The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply.展开更多
This article presents the results of comparative study of two PV solar modules technologies,namely monofacial and bifacial.This study main objective is to identify conditions and parameters that make it possible to ob...This article presents the results of comparative study of two PV solar modules technologies,namely monofacial and bifacial.This study main objective is to identify conditions and parameters that make it possible to obtain better energy and economic efficiency from one or other of two technologies.The study reason lies in revival observed on bifacial module in recent years where all the major manufacturers of PV solar panels are developing them where in a few years,this technology risks being at the same price as the monofacial solar panel with better efficiency.Economic indicator used is energy levelized cost(LCOE)which is function technology type,energy productivity,annual investment and operation cost.To achieve this,a 3.685 MWc solar PV power plant was dimensioned and simulated under Matlab for a 3.5 ha site with a 2,320,740,602 FCFA budget for monofacial installation,against 1,925,188,640 FCFA for 2.73 MWc bifacial installation.The LCOE comparative analysis of two technologies calculated over a period of 25 years,showed that plant with bifacial panels is more beneficial if bifacial gain is greater than 9%.It has further been found that it is possible to gain up to 40%of invested cost if bifacial gain reaches 45%.Finally,a loss of about 10%of invested cost could be recorded if bifacial gain is less than 9%.展开更多
The explosive technological improvement of photovoltaic systems as well as the necessity of populations to come to less expensive energy sources, that have led to an implosion at the level of solar panel manufacturers...The explosive technological improvement of photovoltaic systems as well as the necessity of populations to come to less expensive energy sources, that have led to an implosion at the level of solar panel manufacturers. This causes a large flow of these equipments to developing countries where the need is high, without any quality control. That conducted an experimental investigation on the performance characteristics of a 250 wp monocrystalline silicon photovoltaic module in other to check the verification and quality control. Most of these PV panels which often have missing informations are manufactured and tested in places that are inadequate for our environmental and meteorological conditions. Also, their influences on the stability of internal parameters were evaluated in order to optimize their performance. The results obtained at maximum illumination (1000 w/m<sup>2</sup>) confirmed those produced by the manufacturer. The analysis of these characteristics showed that the illumination and the temperature (meteorological factors) influenced at most the stability of the internal characteristics of the module in the sense that the maximum power increased very rapidly beyond 750 w/m<sup>2</sup> but a degradation of performance was accentuated for a temperature of the solar cells exceeding 50°C. The degradation coefficients were evaluated at -0.0864 V/°C for the voltage and at -1.6248 w/°C for the power. The 10° inclination angle of the solar panel proved to be ideal for optimizing overall efficiency in practical situations.展开更多
In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is con...In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is constrained by certain limitations. Notably, the efficiency of solar PV modules on the ground peaks at a maximum of 25%, and there are concerns regarding their long-term reliability, with an expected lifespan of approximately 25 years without failures. This study focuses on analyzing the thermal efficiency of PV Modules. We have investigated the temperature profile of PV Modules under varying environmental conditions, such as air velocity and ambient temperature, utilizing Computational Fluid Dynamics (CFD). This analysis is crucial as the efficiency of PV Modules is significantly impacted by changes in the temperature differential relative to the environment. Furthermore, the study highlights the effect of airflow over solar panels on their temperature. It is found that a decrease in the temperature of the PV Module increases Open Circuit Voltage, underlining the importance of thermal management in optimizing solar panel performance.展开更多
A variety of test methodologies are commonly used to assess if a photovoltaic system can perform in line with expectations generated by a computer simulation. One of the commonly used methodologies across the PV indus...A variety of test methodologies are commonly used to assess if a photovoltaic system can perform in line with expectations generated by a computer simulation. One of the commonly used methodologies across the PV industry is an ASTM E2848. ASTM E2848-13, 2023 test method provides measurement and analysis procedures for determining the capacity of a specific photovoltaic system built in a particular place and in operation under natural sunlight. This test method is mainly used for acceptance testing of newly installed photovoltaic systems, reporting of DC or AC system performance, and monitoring of photovoltaic system performance. The purpose of the PV Capacity Test and modeled energy test is to verify that the integrated system formed from all components of the PV Project has a production capacity that achieves the Guaranteed Capacity and the Guaranteed modeled AEP under measured weather conditions that occur when each PV Capacity Test is conducted. In this paper, we will be discussing ASTM E2848 PV Capacity test plan purpose and scope, methodology, Selection of reporting conditions (RC), data requirements, calculation of results, reporting, challenges, acceptance criteria on pass/fail test results, Cure period, and Sole remedy for EPC contractors for bifacial irradiance.展开更多
The conventional approach to optimizing tilt angles for fixed solar panels aims to maximize energy generation over the entire year. However, in the context of a supply controlled electric grid, where solar energy avai...The conventional approach to optimizing tilt angles for fixed solar panels aims to maximize energy generation over the entire year. However, in the context of a supply controlled electric grid, where solar energy availability varies, this criterion may not be optimal. This study explores two alternative optimization criteria focused on maximizing baseload supply potential and minimizing required storage capacity to address seasonality in energy generation. The optimal tilt angles determined for these criteria differed significantly from the standard approach. This research highlights additional factors crucial for designing solar power systems beyond gross energy generation, essential for the global transition towards a fully renewable energy-based electric grid in the future.展开更多
面对居民日益增长的生活热水和电能需求,光伏/光热(photovoltaic/thermal,PV/T)技术的应用可以降低建筑运行时的能源消耗。本文介绍了一种太阳能PV/T光储直驱热电联产(combined heat and power,CHP)系统,为了减少系统运行过程中的能量损...面对居民日益增长的生活热水和电能需求,光伏/光热(photovoltaic/thermal,PV/T)技术的应用可以降低建筑运行时的能源消耗。本文介绍了一种太阳能PV/T光储直驱热电联产(combined heat and power,CHP)系统,为了减少系统运行过程中的能量损失,采用直流压缩机和储能电池,并在兰州地区对系统的运行性能开展了实验测试。研究结果表明,PV/T系统的光伏板温度相比传统PV组件温度平均降低12.26℃,平均发电效率相对提升8.1%。在将24.4~27.2℃的水加热到50.1~50.7℃的过程中,平均性能系数(coefficient of performance,COP)可达到5.48,相比传统空气源热泵热水器提高82.1%~106.8%。平均集热效率和综合效率分别为37.30%和71.24%,PV/T系统的发电量和耗电量分别为3.33kWh和1.69kWh,发电量相比PV系统提高5.7%。太阳能PV/T光储直驱热电联产系统可以减少建筑部门的能源消耗,并提升PV/T系统的发电效率和综合效率,在晴天条件下可以实现离网运行。展开更多
Optimizing the output power of a photovoltaic panel improves the efficiency of a solar driven energy system. The maximum output power of a photovoltaic panel depends on atmospheric conditions, such as (direct solar ra...Optimizing the output power of a photovoltaic panel improves the efficiency of a solar driven energy system. The maximum output power of a photovoltaic panel depends on atmospheric conditions, such as (direct solar radiation, air pollution and cloud movements), load profile and the tilt and orientation angles. This paper describes an experimental analysis of maximizing output power of a photovoltaic panel, based on the use of existing equations of tilt angles derived from mathematical models and simulation packages. Power regulation is achieved by the use of a DC-DC converter, a fixed load resistance and a single photovoltaic panel. A data logger is used to make repeated measurements which ensure reliability of the results. The results of the paper were taken over a four month period from April through July. The photovoltaic panel was set to an orientation angle of 0? with tilt angles of 16?, 26? and 36?. Preliminary results indicate that tilt angles between 26? and 36? provide optimum photovoltaic output power for winter months in South Africa.展开更多
基金the financial support provided by Universiti Malaysia Pahang Al Sultan Abdullah(www.umpsa.edu.my,accessed 10 April 2024)through the Doctoral Research Scheme(DRS)toMr.Rittick Maity and the Postgraduate Research Scheme(PGRS220390).
文摘The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs of slowing down,with solar photovoltaic(PV)panels being the primary technology for converting sunlight into electricity.Advancements are continuously being made to ensure cost-effectiveness,high-performing cells,extended lifespans,and minimal maintenance requirements.This study focuses on identifying suitable locations for implementing solar PVsystems at theUniversityMalaysia PahangAl SultanAbdullah(UMPSA),Pekan campus including buildings,water bodies,and forest areas.A combined technical and economic analysis is conducted using Helioscope for simulations and the Photovoltaic Geographic Information System(PVGIS)for economic considerations.Helioscope simulation examine case studies for PV installations in forested areas,lakes,and buildings.This approach provides comprehensive estimations of solar photovoltaic potential,annual cost savings,electricity costs,and greenhouse gas emission reductions.Based on land coverage percentages,Floatovoltaics have a large solar PV capacity of 32.3 Megawatts(MW);forest-based photovoltaics(Forestvoltaics)achieve maximum yearly savings of RM 37,268,550;and Building Applied Photovoltaics(BAPV)have the lowest CO2 emissions and net carbon dioxide reduction compared to other plant sizes.It also clarifies the purpose of using both software tools to achieve a comprehensive understanding of both technical and economic aspects.
文摘In this paper,a detailed model of a photovoltaic(PV)panel is used to study the accumulation of dust on solar panels.The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass,as it increases the reflection of light by particles.This phenomenon,commonly known as the“soiling effect”,presents a significant challenge to PV systems on a global scale.Two basic models of the equivalent circuits of a solar cell can be found,namely the single-diode model and the two-diode models.The limitation of efficiency data in manufacturers’datasheets has encouraged us to develop an equivalent electrical model that is efficient under dust conditions,integrated with optical transmittance considerations to investigate the soiling effect.The proposed approach is based on the use of experimental current-voltage(I-V)characteristics with simulated data using MATLAB/Simulink.Our research outcomes underscores the feasibility of accurately quantifying the reduction in energy production resulting from soiling by assessing the optical transmittance of accumulated dust on the surface of PV glass.
文摘The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.
文摘This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV technology grows, the need for effective fault detection strategies becomes increasingly paramount to maximize energy output and minimize operational downtimes of solar power systems. These approaches include the use of machine learning and deep learning methodologies to be able to detect the identified faults in PV technology. Here, we delve into how machine learning models, specifically kernel-based extreme learning machines and support vector machines, trained on current-voltage characteristic (I-V curve) data, provide information on fault identification. We explore deep learning approaches by taking models like EfficientNet-B0, which looks at infrared images of solar panels to detect subtle defects not visible to the human eye. We highlight the utilization of advanced image processing techniques and algorithms to exploit aerial imagery data, from Unmanned Aerial Vehicles (UAVs), for inspecting large solar installations. Some other techniques like DeepLabV3 , Feature Pyramid Networks (FPN), and U-Net will be detailed as such tools enable effective segmentation and anomaly detection in aerial panel images. Finally, we discuss implications of these technologies on labor costs, fault detection precision, and sustainability of PV installations.
基金supported by the National Natural Science Foundation of China(No.52074305)Henan Scientific and Technological Research Project(No.212102210005)Open Fund of Henan Engineering Laboratory for Photoelectric Sensing and Intelligent Measurement and Control(No.HELPSIMC-2020-00X).
文摘Based on the artificial intelligence algorithm of RetinaNet,we propose the Ghost-RetinaNet in this paper,a fast shadow detection method for photovoltaic panels,to solve the problems of extreme target density,large overlap,high cost and poor real-time performance in photovoltaic panel shadow detection.Firstly,the Ghost CSP module based on Cross Stage Partial(CSP)is adopted in feature extraction network to improve the accuracy and detection speed.Based on extracted features,recursive feature fusion structure ismentioned to enhance the feature information of all objects.We introduce the SiLU activation function and CIoU Loss to increase the learning and generalization ability of the network and improve the positioning accuracy of the bounding box regression,respectively.Finally,in order to achieve fast detection,the Ghost strategy is chosen to lighten the size of the algorithm.The results of the experiment show that the average detection accuracy(mAP)of the algorithm can reach up to 97.17%,the model size is only 8.75 MB and the detection speed is highly up to 50.8 Frame per second(FPS),which can meet the requirements of real-time detection speed and accuracy of photovoltaic panels in the practical environment.The realization of the algorithm also provides new research methods and ideas for fault detection in the photovoltaic power generation system.
基金supported by the Science and Technology Project of SGCC(kj2022-075).
文摘The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.
文摘Photovoltaic(PV)boards are a perfect way to create eco-friendly power from daylight.The defects in the PV panels are caused by various conditions;such defective PV panels need continuous monitoring.The recent development of PV panel monitoring systems provides a modest and viable approach to monitoring and managing the condition of the PV plants.In general,conventional procedures are used to identify the faulty modules earlier and to avoid declines in power generation.The existing deep learning architectures provide the required output to predict the faulty PV panels with less accuracy and a more time-consuming process.To increase the accuracy and to reduce the processing time,a new Convolutional Neural Network(CNN)architecture is required.Hence,in the present work,a new Real-time Multi Variant Deep learning Model(RMVDM)architecture is proposed,and it extracts the image features and classifies the defects in PV panels quickly with high accuracy.The defects that arise in the PV panels are identified by the CNN based RMVDM using RGB images.The biggest difference between CNN and its predecessors is that CNN automatically extracts the image features without any help from a person.The technique is quantitatively assessed and compared with existing faulty PV board identification approaches on the large real-time dataset.The results show that 98%of the accuracy and recall values in the fault detection and classification process.
文摘The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.
基金the Efficiency and Performance Engineering Network International Collaboration Fund(award No.of TEPEN-ICF2021-05).
文摘The exploitation of renewable energy has become a pressing task due to climate change and the recent energy crisis caused by regional conflicts.This has further accelerated the rapid development of the global photovoltaic(PV)market,thereby making the management and maintenance of solar photovoltaic(SPV)panels a new area of business as neglecting it may lead to significant financial losses and failure to combat climate change and the energy crisis.SPV panels face many risks that may degrade their power generation performance,damage their structures,or even cause the complete loss of their power generation capacity during their long service life.It is hoped that these problems can be identified and resolved as soon as possible.However,this is a challenging task as a solar power plant(SPP)may contain hundreds even thousands of SPV panels.To provide a potential solution for this issue,a smart drone-based SPV panel condition monitoring(CM)technique has been studied in this paper.In the study,the U-Net neural network(UNNN),which is ideal for undertaking image segmentation tasks and good at handling small sample size problem,is adopted to automatically create mask images from the collected true color thermal infrared images.The support vector machine(SVM),which performs very well in highdimensional feature spaces and is therefore good at image recognition,is employed to classifying the mask images generated by the UNNN.The research result has shown that with the aid of the UNNN and SVM,the thermal infrared images that are remotely collected by drones from SPPs can be automatically and effectively processed,analyzed,and classified with reasonable accuracy(over 80%).Particularly,the mask images produced by the trained UNNN,which contain less interference items than true color thermal infrared images,significantly benefit the assessing accuracy of the health state of SPV panels.It is anticipated that the technical approach presented in this paper will serve as an inspiration for the exploration of more advanced and dependable smart asset management techniques within the solar power industry.
文摘A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.
基金supported by the Key Research and Development Projects in Shaanxi Province(Program No.2021GY-306)the Innovation Capability Support Program of Shaanxi(Program No.2022KJXX-41)the Key Scientific and Technological Projects of Xi’an(Program No.2022JH-RGZN-0005).
文摘The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply.
文摘This article presents the results of comparative study of two PV solar modules technologies,namely monofacial and bifacial.This study main objective is to identify conditions and parameters that make it possible to obtain better energy and economic efficiency from one or other of two technologies.The study reason lies in revival observed on bifacial module in recent years where all the major manufacturers of PV solar panels are developing them where in a few years,this technology risks being at the same price as the monofacial solar panel with better efficiency.Economic indicator used is energy levelized cost(LCOE)which is function technology type,energy productivity,annual investment and operation cost.To achieve this,a 3.685 MWc solar PV power plant was dimensioned and simulated under Matlab for a 3.5 ha site with a 2,320,740,602 FCFA budget for monofacial installation,against 1,925,188,640 FCFA for 2.73 MWc bifacial installation.The LCOE comparative analysis of two technologies calculated over a period of 25 years,showed that plant with bifacial panels is more beneficial if bifacial gain is greater than 9%.It has further been found that it is possible to gain up to 40%of invested cost if bifacial gain reaches 45%.Finally,a loss of about 10%of invested cost could be recorded if bifacial gain is less than 9%.
文摘The explosive technological improvement of photovoltaic systems as well as the necessity of populations to come to less expensive energy sources, that have led to an implosion at the level of solar panel manufacturers. This causes a large flow of these equipments to developing countries where the need is high, without any quality control. That conducted an experimental investigation on the performance characteristics of a 250 wp monocrystalline silicon photovoltaic module in other to check the verification and quality control. Most of these PV panels which often have missing informations are manufactured and tested in places that are inadequate for our environmental and meteorological conditions. Also, their influences on the stability of internal parameters were evaluated in order to optimize their performance. The results obtained at maximum illumination (1000 w/m<sup>2</sup>) confirmed those produced by the manufacturer. The analysis of these characteristics showed that the illumination and the temperature (meteorological factors) influenced at most the stability of the internal characteristics of the module in the sense that the maximum power increased very rapidly beyond 750 w/m<sup>2</sup> but a degradation of performance was accentuated for a temperature of the solar cells exceeding 50°C. The degradation coefficients were evaluated at -0.0864 V/°C for the voltage and at -1.6248 w/°C for the power. The 10° inclination angle of the solar panel proved to be ideal for optimizing overall efficiency in practical situations.
文摘In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is constrained by certain limitations. Notably, the efficiency of solar PV modules on the ground peaks at a maximum of 25%, and there are concerns regarding their long-term reliability, with an expected lifespan of approximately 25 years without failures. This study focuses on analyzing the thermal efficiency of PV Modules. We have investigated the temperature profile of PV Modules under varying environmental conditions, such as air velocity and ambient temperature, utilizing Computational Fluid Dynamics (CFD). This analysis is crucial as the efficiency of PV Modules is significantly impacted by changes in the temperature differential relative to the environment. Furthermore, the study highlights the effect of airflow over solar panels on their temperature. It is found that a decrease in the temperature of the PV Module increases Open Circuit Voltage, underlining the importance of thermal management in optimizing solar panel performance.
文摘A variety of test methodologies are commonly used to assess if a photovoltaic system can perform in line with expectations generated by a computer simulation. One of the commonly used methodologies across the PV industry is an ASTM E2848. ASTM E2848-13, 2023 test method provides measurement and analysis procedures for determining the capacity of a specific photovoltaic system built in a particular place and in operation under natural sunlight. This test method is mainly used for acceptance testing of newly installed photovoltaic systems, reporting of DC or AC system performance, and monitoring of photovoltaic system performance. The purpose of the PV Capacity Test and modeled energy test is to verify that the integrated system formed from all components of the PV Project has a production capacity that achieves the Guaranteed Capacity and the Guaranteed modeled AEP under measured weather conditions that occur when each PV Capacity Test is conducted. In this paper, we will be discussing ASTM E2848 PV Capacity test plan purpose and scope, methodology, Selection of reporting conditions (RC), data requirements, calculation of results, reporting, challenges, acceptance criteria on pass/fail test results, Cure period, and Sole remedy for EPC contractors for bifacial irradiance.
文摘The conventional approach to optimizing tilt angles for fixed solar panels aims to maximize energy generation over the entire year. However, in the context of a supply controlled electric grid, where solar energy availability varies, this criterion may not be optimal. This study explores two alternative optimization criteria focused on maximizing baseload supply potential and minimizing required storage capacity to address seasonality in energy generation. The optimal tilt angles determined for these criteria differed significantly from the standard approach. This research highlights additional factors crucial for designing solar power systems beyond gross energy generation, essential for the global transition towards a fully renewable energy-based electric grid in the future.
文摘面对居民日益增长的生活热水和电能需求,光伏/光热(photovoltaic/thermal,PV/T)技术的应用可以降低建筑运行时的能源消耗。本文介绍了一种太阳能PV/T光储直驱热电联产(combined heat and power,CHP)系统,为了减少系统运行过程中的能量损失,采用直流压缩机和储能电池,并在兰州地区对系统的运行性能开展了实验测试。研究结果表明,PV/T系统的光伏板温度相比传统PV组件温度平均降低12.26℃,平均发电效率相对提升8.1%。在将24.4~27.2℃的水加热到50.1~50.7℃的过程中,平均性能系数(coefficient of performance,COP)可达到5.48,相比传统空气源热泵热水器提高82.1%~106.8%。平均集热效率和综合效率分别为37.30%和71.24%,PV/T系统的发电量和耗电量分别为3.33kWh和1.69kWh,发电量相比PV系统提高5.7%。太阳能PV/T光储直驱热电联产系统可以减少建筑部门的能源消耗,并提升PV/T系统的发电效率和综合效率,在晴天条件下可以实现离网运行。
文摘Optimizing the output power of a photovoltaic panel improves the efficiency of a solar driven energy system. The maximum output power of a photovoltaic panel depends on atmospheric conditions, such as (direct solar radiation, air pollution and cloud movements), load profile and the tilt and orientation angles. This paper describes an experimental analysis of maximizing output power of a photovoltaic panel, based on the use of existing equations of tilt angles derived from mathematical models and simulation packages. Power regulation is achieved by the use of a DC-DC converter, a fixed load resistance and a single photovoltaic panel. A data logger is used to make repeated measurements which ensure reliability of the results. The results of the paper were taken over a four month period from April through July. The photovoltaic panel was set to an orientation angle of 0? with tilt angles of 16?, 26? and 36?. Preliminary results indicate that tilt angles between 26? and 36? provide optimum photovoltaic output power for winter months in South Africa.