期刊文献+
共找到23,117篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical Assessment of the Thermal Efficiency of a Concentrated Photovoltaic/Thermal (CPV/T) Hybrid System Using Air as Heat Transfer Fluid
1
作者 Amadou Konfe Boureima Kabore +2 位作者 Yves Christian Nonguierma Fatimata Ouedraogo Sié Kam 《Smart Grid and Renewable Energy》 2024年第1期1-14,共14页
In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air... In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air as the cooling fluid. This enabled us to evaluate some of the parameters influencing the electrical and thermal performance of this device. The results showed that the temperature, thermal efficiency and electrical efficiency delivered depend on the air mass flow rate. The electrical and thermal efficiencies for different values of air mass flow are encouraging, and demonstrate the benefits of cooling photovoltaic cells. The results show that thermal efficiency decreases air flow rate greater than 0.7 kg/s, whatever the value of the light concentration used. The thermal efficiency of the solar cell increases as the light concentration increases, whatever the air flow rate used. For a concentration equal to 30 sun, the thermal efficiency is 0.16 with an air flow rate equal to 0.005 kg/s;the thermal efficiency increases to 0.19 with an air flow rate equal to 0.1 kg/s at the same concentration. An interesting and useful finding was that the proposed numerical model allows the determination of the electrical as well as thermal efficiency of the hybrid CPV/T with air flow as cooling fluid. 展开更多
关键词 pv Cell CONCENTRATING THERMAL Energy Conversion COOLING Hybrid system
下载PDF
Performance Assessment of a Real PV System Connected to a Low-Voltage Grid
2
作者 Gaber Magdy Mostafa Metwally +1 位作者 Adel A.Elbaset Esam Zaki 《Energy Engineering》 EI 2024年第1期13-26,共14页
The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Th... The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient. 展开更多
关键词 Low-voltage grid photovoltaic(pv)system total harmonic distortion grid-connected pv system
下载PDF
Probabilistic Global Maximum Power Point Tracking Algorithm for Continuously Varying Partial Shading Conditions on Autonomous PV Systems
3
作者 Kha Bao Khanh Cao Vincent Boitier 《Energy and Power Engineering》 2024年第1期21-42,共22页
A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there ... A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms. 展开更多
关键词 photovoltaic pv Global Maximum Power Point Tracking GMPPT Fast Varying Partial Shading Conditions Autonomous pv systems GMPPT Review
下载PDF
Analysis for Effects of Temperature Rise of PV Modules upon Driving Distance of Vehicle Integrated Photovoltaic Electric Vehicles
4
作者 Masafumi Yamaguchi Yasuyuki Ota +18 位作者 Taizo Masuda Christian Thiel Anastasios Tsakalidis Arnulf Jaeger-Waldau Kenji Araki Kensuke Nishioka Tatsuya Takamoto Takashi Nakado Kazumi Yamada Tsutomu Tanimoto Yosuke Tomita Yusuke Zushi Kenichi Okumura Takashi Mabuchi Akinori Satou Kyotaro Nakamura Ryo Ozaki Nobuaki Kojima Yoshio Ohshita 《Energy and Power Engineering》 2024年第4期131-150,共20页
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ... The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV. 展开更多
关键词 Vehicle Integrated photovoltaics (VIpv) VIpv-Powered Electric Vehicles Driving Distance pv Modules Solar Irradiation Temperature Rise Radiative Cooling
下载PDF
Multi-Time Scale Optimal Scheduling of a Photovoltaic Energy Storage Building System Based on Model Predictive Control
5
作者 Ximin Cao Xinglong Chen +2 位作者 He Huang Yanchi Zhang Qifan Huang 《Energy Engineering》 EI 2024年第4期1067-1089,共23页
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ... Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance. 展开更多
关键词 Load optimization model predictive control multi-time scale optimal scheduling photovoltaic consumption photovoltaic energy storage building
下载PDF
FaultMonitoring Strategy for PV System Based on I-V Feature Library
6
作者 Huaxing Zhao Yanbo Che +1 位作者 Gang Wen Yijing Chen 《Energy Engineering》 EI 2024年第3期643-660,共18页
Long-term use in challenging natural conditions is possible for photovoltaic modules,which are extremely prone to failure.Failure to diagnose and address faults in Photovoltaic(PV)power systems in a timely manner can ... Long-term use in challenging natural conditions is possible for photovoltaic modules,which are extremely prone to failure.Failure to diagnose and address faults in Photovoltaic(PV)power systems in a timely manner can cause permanent damage to PV modules and,in more serious cases,fires.Therefore,research into photovoltaic module defect detection techniques is crucial for the growth of the photovoltaic sector as well as for maintaining national economic prosperity and ensuring public safety.Considering the drawbacks of the current real-time and historical data-based methods for monitoring distributed PV systems,this paper proposes a method for monitoring PV systems at the module or string level that can be achieved by monitoring only electrical signals.The approach doesn’t need a lot of tests to get the operational data of PV modules beforehand and only requires theoretical feature libraries of PV modules through panel parameter calculations.The present operating conditions and the open-circuit and short-circuit faults can be precisely identified by comparing the observed open-circuit voltage and short-circuit current with the corresponding data in the theoretical feature library.After that,by comparing the measured maximum power point voltage and current with the corresponding data in the theoretical feature library through the threshold method,aging and shadowing faults can be accurately determined.Experimental testing was done to see whether the suggested method was effective.The results show that the proposed technique is able to diagnose open-circuit faults,short-circuit faults,aging faults,and shadowing faults with shadow occlusion above 20%. 展开更多
关键词 pv system lambert W function threshold method
下载PDF
Investigating Load Regulation Characteristics of a Wind-PV-Coal Storage Multi-Power Generation System
7
作者 Zhongping Liu Enhui Sun +3 位作者 Jiahao Shi Lei Zhang Qi Wang Jiali Dong 《Energy Engineering》 EI 2024年第4期913-932,共20页
There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regu... There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regulation model for a multi-power generation system comprising wind,PV,and coal energy storage using realworld data.The power supply process was divided into eight fundamental load regulation scenarios,elucidating the influence of each scenario on load regulation.Within the framework of the multi-power generation system with the wind(50 MW)and PV(50 MW)alongside a CFPP(330 MW),a lithium-iron phosphate energy storage system(LIPBESS)was integrated to improve the system’s load regulation flexibility.The energy storage operation strategy was formulated based on the charging and discharging priority of the LIPBESS for each basic scenario and the charging and discharging load calculation method of LIPBESS auxiliary regulation.Through optimization using the particle swarm algorithm,the optimal capacity of LIPBESS was determined to be within the 5.24-4.88 MWh range.From an economic perspective,the LIPBESS operating with CFPP as the regulating power source was 49.1% lower in capacity compared to the renewable energy-based storage mode. 展开更多
关键词 Wind power coal-fired power pv multi-power generation system lithium-iron phosphate energy storage system
下载PDF
Reliability-BasedModel for Incomplete Preventive ReplacementMaintenance of Photovoltaic Power Systems
8
作者 Wei Chen Ming Li +2 位作者 Tingting Pei Cunyu Sun Huan Lei 《Energy Engineering》 EI 2024年第1期125-144,共20页
At present,the operation and maintenance of photovoltaic power generation systems mainly comprise regular maintenance,breakdown maintenance,and condition-based maintenance,which is very likely to lead to over-or under... At present,the operation and maintenance of photovoltaic power generation systems mainly comprise regular maintenance,breakdown maintenance,and condition-based maintenance,which is very likely to lead to over-or under-repair of equipment.Therefore,a preventive maintenance and replacement strategy for PV power generation systems based on reliability as a constraint is proposed.First,a hybrid failure function with a decreasing service age factor and an increasing failure rate factor is introduced to describe the deterioration of PV power generation equipment,and the equipment is replaced when its reliability drops to the replacement threshold in the last cycle.Then,based on the reliability as a constraint,the average maintenance cost and availability of the equipment are considered,and the non-periodic incomplete maintenance model of the PV power generation system is established to obtain the optimal number of repairs,each maintenance cycle and the replacement cycle of the PV power generation system components.Next,the inverter of a PV power plant is used as a research object.The model in this paper is compared and analyzed with the equal cycle maintenance model without considering reliability and the maintenance model without considering the equipment replacement threshold,Through model comparison,when the optimal maintenance strategy is(0.80,4),the average maintenance cost of this paper’s model are decreased by 20.3%and 5.54%and the availability is increased by 0.2395% and 0.0337%,respectively,compared with the equal-cycle maintenance model without considering the reliability constraint and the maintenance model without considering the equipment replacement threshold.Therefore,this maintenance model can ensure the high reliability of PV plant operation while increasing the equipment availability to improve the system economy. 展开更多
关键词 RELIABILITY photovoltaic power system average maintenance cost AVAILABILITY incomplete preventive maintenance hybrid failure rate
下载PDF
Tilt Angle Optimality Criteria for Stand Alone PV Systems
9
作者 Mohammad Abu-Naser 《Journal of Power and Energy Engineering》 2024年第3期1-18,共18页
The conventional approach to optimizing tilt angles for fixed solar panels aims to maximize energy generation over the entire year. However, in the context of a supply controlled electric grid, where solar energy avai... The conventional approach to optimizing tilt angles for fixed solar panels aims to maximize energy generation over the entire year. However, in the context of a supply controlled electric grid, where solar energy availability varies, this criterion may not be optimal. This study explores two alternative optimization criteria focused on maximizing baseload supply potential and minimizing required storage capacity to address seasonality in energy generation. The optimal tilt angles determined for these criteria differed significantly from the standard approach. This research highlights additional factors crucial for designing solar power systems beyond gross energy generation, essential for the global transition towards a fully renewable energy-based electric grid in the future. 展开更多
关键词 Electric Grid Fixed Solar Panels Optimal pv Tilt Angle Seasonal Solar Variability Renewable Energy Supply-Demand Balance
下载PDF
绿色金融支持我国东部地区BIPV建筑发展评价及耦合分析
10
作者 叶青 李悦 魏心融 《华侨大学学报(自然科学版)》 CAS 2024年第2期290-296,共7页
以我国东部地区的10个省(市)为例,建立2017-2021年绿色金融和光伏建筑一体化(BIPV)发展的评价指标体系,并利用熵值法与耦合协调度模型开展实证分析。研究结果表明:从区域性发展差异上看,绿色金融发展和BIPV建筑发展水平较高的是上海市... 以我国东部地区的10个省(市)为例,建立2017-2021年绿色金融和光伏建筑一体化(BIPV)发展的评价指标体系,并利用熵值法与耦合协调度模型开展实证分析。研究结果表明:从区域性发展差异上看,绿色金融发展和BIPV建筑发展水平较高的是上海市和北京市,相对落后的是河北省和海南省;从发展态势上看,绿色金融和BIPV建筑发展总体上呈上升趋势;从耦合特征上看,近年来我国东部地区绿色金融和BIPV建筑发展两系统之间的耦合度及耦合协调度均较高,且总体呈逐步增长的趋势。 展开更多
关键词 光伏建筑一体化(BIpv) 绿色金融 熵值法 耦合协调度模型 中国东部地区
下载PDF
Coordinated planning for flexible interconnection and energy storage system in low-voltage distribution networks to improve the accommodation capacity of photovoltaic 被引量:1
11
作者 Jiaguo Li Lu Zhang +1 位作者 Bo Zhang Wei Tang 《Global Energy Interconnection》 EI CSCD 2023年第6期700-713,共14页
The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and v... The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method. 展开更多
关键词 Low-voltage distribution network photovoltaic accommodation Flexible interconnection Energy storage system Bilevel programming
下载PDF
基于人工神经网络的PV/T热电联供系统性能预测
12
作者 贺斌 李岚卿 +3 位作者 程江勇超 周希正 张丽 梁晓春 《农业工程学报》 EI CAS CSCD 北大核心 2024年第6期309-318,共10页
为研究太阳能PV/T热电联供系统的性能和针对太阳能PV/T系统复杂的能量平衡方程,搭建了太阳能PV/T系统试验台,同时建立了基于改进灰狼优化的BP神经网络(back propagation neural network model based on improved grey wolf algorithm,IG... 为研究太阳能PV/T热电联供系统的性能和针对太阳能PV/T系统复杂的能量平衡方程,搭建了太阳能PV/T系统试验台,同时建立了基于改进灰狼优化的BP神经网络(back propagation neural network model based on improved grey wolf algorithm,IGWO-BP)预测模型,在晴朗天气下进行试验,并采用该模型对系统电功率以及蓄热水箱内水温进行预测。结果显示,晴朗日系统的电效率8.7%~12.2%、热效率51.7%;预测结果与BP神经网络预测模型、基于粒子群优化的BP神经网络(back propagation neural network based on particle swarm optimization,PSO-BP)预测模型和卷积神经网络(convolutional neural network,CNN)预测模型预测结果进行比较,结果显示IGWO-BP预测模型电效率预测模型的绝对百分比误差(mean absolute percentage error,MAPE)、决定系数(determination coefficient,R^(2))、均方根误差(root mean square error,RMSE)、效率因子(efficient factor,EF)和Pearson相关系数(pearson related coefficient,r)分别为4.5E-05、0.99、0.24、0.99和1.00,在储热罐温度预测中,上述指标分别为8.90E-04、0.98、0.07、0.98、0.99,均优于其他预测模型,IGWO-BP神经网络预测模型具有更好的预测性能。研究结果可为太阳能PV/T热电联供系统性能预测与优化控制提供参考。 展开更多
关键词 性能 预测 BP神经网络 pv/T 改进的灰狼算法
下载PDF
Synergetic optimization operation method for distribution network based on SOP and PV
13
作者 Lei Chen Ning Zhang +4 位作者 Xingfang Yang Wei Pei Zhenxing Zhao Yinan Zhu Hao Xiao 《Global Energy Interconnection》 EI CSCD 2024年第2期130-141,共12页
The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices... The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate. 展开更多
关键词 Synergetic optimization Soft open point(SOP) photovoltaic(pv) Distribution network
下载PDF
Study on Image Recognition Algorithm for Residual Snow and Ice on Photovoltaic Modules
14
作者 Yongcan Zhu JiawenWang +3 位作者 Ye Zhang Long Zhao Botao Jiang Xinbo Huang 《Energy Engineering》 EI 2024年第4期895-911,共17页
The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable ... The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply. 展开更多
关键词 photovoltaic(pv)module residual snow and ice snow detection feature extraction image processing
下载PDF
State-of-the-art review of MPPT techniques for hybrid PV-TEG systems:modeling,methodologies,and perspectives
15
作者 Bo Yang Rui Xie +1 位作者 Jinhang Duan Jingbo Wang 《Global Energy Interconnection》 EI CSCD 2023年第5期567-591,共25页
The development of alternative renewable energy technologies is crucial for alleviating climate change and promoting energy transformation.Of the currently available technologies,solar energy has promising application... The development of alternative renewable energy technologies is crucial for alleviating climate change and promoting energy transformation.Of the currently available technologies,solar energy has promising application prospects owing to its merits of being clean,safe,and sustainable.Solar energy is converted into electricity through photovoltaic(PV)cells;however,the overall conversion efficiency of PV modules is relatively low,and most of the captured solar energy is dissipated in the form of heat.This not only reduces the power generation efficiency of solar cells but may also have a negative impact on the electrical parameters of PV modules and the service life of PV cells.To overcome the shortcomings,an efficient approach involves combining a PV cell with a thermoelectric generator(TEG)to form hybrid PV-TEG systems,which simultaneously improve the energy conversion efficiency of the PV system by reducing the operating temperature of the PV modules and increasing the power output by utilizing the waste heat generated from the PV system to generate electricity via the TEGs.Based on a thorough examination of the literature,this study comprehensively reviews 14 maximum power point tracking(MPPT)algorithms currently applied to hybrid PV-TEG systems and classifies them into five major categories for further discussion,namely conventional,mathematics-based,metaheuristic,artificial intelligence,and other algorithms.This review aims to inspire advanced ideas and research on MPPT algorithms for hybrid PV-TEG systems. 展开更多
关键词 photovoltaic Thermoelectric generator Hybrid pv-TEG MPPT Partial shading condition
下载PDF
Intelligent Systems and Photovoltaic Cells Empowered Topologically by Sudoku Networks
16
作者 Khalid Hamid Muhammad Waseem Iqbal +4 位作者 MUsman Ashraf Akber Abid Gardezi Shafiq Ahmad Mejdal Alqahtani Muhammad Shafiq 《Computers, Materials & Continua》 SCIE EI 2023年第2期4221-4238,共18页
A graph invariant is a number that can be easily and uniquely calculated through a graph.Recently,part of mathematical graph invariants has been portrayed and utilized for relationship examination.Nevertheless,no reli... A graph invariant is a number that can be easily and uniquely calculated through a graph.Recently,part of mathematical graph invariants has been portrayed and utilized for relationship examination.Nevertheless,no reliable appraisal has been embraced to pick,how much these invariants are associated with a network graph in interconnection networks of various fields of computer science,physics,and chemistry.In this paper,the study talks about sudoku networks will be networks of fractal nature having some applications in computer science like sudoku puzzle game,intelligent systems,Local area network(LAN)development and parallel processors interconnections,music composition creation,physics like power generation interconnections,Photovoltaic(PV)cells and chemistry,synthesis of chemical compounds.These networks are generally utilized in disorder,fractals,recursive groupings,and complex frameworks.Our outcomes are the normal speculations of currently accessible outcomes for specific classes of such kinds of networks of two unmistakable sorts with two invariants K-banhatti sombor(KBSO)invariants,Irregularity sombor(ISO)index,Contraharmonic-quadratic invariants(CQIs)and dharwad invariants with their reduced forms.The study solved the Sudoku network used in mentioned systems to improve the performance and find irregularities present in them.The calculated outcomes can be utilized for the modeling,scalability,introduction of new architectures of sudoku puzzle games,intelligent systems,PV cells,interconnection networks,chemical compounds,and extremely huge scope in very large-scale integrated circuits(VLSI)of processors. 展开更多
关键词 SUDOKU dharwad KBSO indices CQIs network graph intelligent system photovoltaic cells
下载PDF
Energy Management and Capacity Optimization of Photovoltaic, Energy Storage System, Flexible Building Power System Considering Combined Benefit
17
作者 Chang Liu Bo Luo +5 位作者 Wei Wang Hongyuan Gao Zhixun Wang Hongfa Ding Mengqi Yu Yongquan Peng 《Energy Engineering》 EI 2023年第2期541-559,共19页
Building structures themselves are one of the key areas of urban energy consumption,therefore,are a major source of greenhouse gas emissions.With this understood,the carbon trading market is gradually expanding to the... Building structures themselves are one of the key areas of urban energy consumption,therefore,are a major source of greenhouse gas emissions.With this understood,the carbon trading market is gradually expanding to the building sector to control greenhouse gas emissions.Hence,to balance the interests of the environment and the building users,this paper proposes an optimal operation scheme for the photovoltaic,energy storage system,and flexible building power system(PEFB),considering the combined benefit of building.Based on the model of conventional photovoltaic(PV)and energy storage system(ESS),the mathematical optimization model of the system is proposed by taking the combined benefit of the building to the economy,society,and environment as the optimization objective,taking the near-zero energy consumption and carbon emission limitation of the building as the main constraints.The optimized operation strategy in this paper can give optimal results by making a trade-off between the users’costs and the combined benefits of the building.The efficiency and effectiveness of the proposed methods are verified by simulated experiments. 展开更多
关键词 photovoltaic energy storage system energy management PEFB optimization operation
下载PDF
Soiling Effect and Remedial Measures of Solar Photovoltaic System Performance in Kuwait
18
作者 Yaqoub E. Althuwaini 《Journal of Power and Energy Engineering》 2023年第4期39-57,共19页
The Gulf Cooperation Countries have the advantages of fundamental characteristics and abundant natural resources due to the high proportion of solar radiation, which helps to expand the transition to renewable energy,... The Gulf Cooperation Countries have the advantages of fundamental characteristics and abundant natural resources due to the high proportion of solar radiation, which helps to expand the transition to renewable energy, especially in solar projects. The Kuwait location was chosen for this research because of its high dust levels and average daily sunshine of 9.4 hours. The soiling map of Kuwait was then created using PVsyst software. A theoretical and mathematical model for 100 MW was developed based on many environmental and technical parameters. The model was run with Kuwait parameters and 100 MW solar PV power plant capacity. The results show that more than 25% of total generated electricity could be lost annually without any mitigation strategy. Furthermore, the efficiency loss could increase by around 50% during the seasons with sandstorms and high soiling rates. Additionally, manual and automatic cleaning methods were found to increase energy production from 112,092 MWh to 207,300 MWh. Moreover, manual cleaning reduced energy costs by 4.9%, but automated cleaning resulted in a 17.34% higher energy-saving cost than a system without cleaning. In addition, when using the automatic cleaning system, the system’s payback period was reduced from 9.22 to 7.86 years. Therefore, an automated cleaning system is recommended for use in Kuwait. 展开更多
关键词 photovoltaic Soiling Impact Soiling Map Mitigation Techniques KUWAIT Payback Period
下载PDF
New Approach of Multi-Cell Stacked Cell Inverter for Solar Photovoltaic System
19
作者 François Yonga Colince Welba +1 位作者 Abdouramani Dadjé Noël Djongyang 《Journal of Power and Energy Engineering》 2023年第1期1-17,共17页
In this paper, a new inverter topology dedicated to isolated or grid-connected PV systems is proposed. This inverter is based on the structures of a stacked multi-cell converter (SMC) and an H-bridge. This new topolog... In this paper, a new inverter topology dedicated to isolated or grid-connected PV systems is proposed. This inverter is based on the structures of a stacked multi-cell converter (SMC) and an H-bridge. This new topology has allowed the voltage stresses of the converter to be distributed among several switching cells. Secondly, divide the input voltage into several fractions to reduce the number of power semiconductors to be switched. In this contribution, the general topology of this micro-inverter has been described and the simulation tests developed to validate its operation have been presented. Finally, we discussed the simulation results, the efficiency of this topology and the feasibility of its use in a grid-connected photovoltaic production system. 展开更多
关键词 photovoltaic system MICRO-INVERTER Stacked Multi-Cell Converter (SMC) H-BRIDGE Pulse Width Modulation (PWM)
下载PDF
Layered power scheduling optimization of PV hydrogen production system considering performance attenuation of PEMEL
20
作者 Yanhui Xu Haowei Chen 《Global Energy Interconnection》 EI CSCD 2023年第6期714-725,共12页
To analyze the additional cost caused by the performance attenuation of a proton exchange membrane electrolyzer(PEMEL)under the fluctuating input of renewable energy,this study proposes an optimization method for powe... To analyze the additional cost caused by the performance attenuation of a proton exchange membrane electrolyzer(PEMEL)under the fluctuating input of renewable energy,this study proposes an optimization method for power scheduling in hydrogen production systems under the scenario of photovoltaic(PV)electrolysis of water.First,voltage and performance attenuation models of the PEMEL are proposed,and the degradation cost of the electrolyzer under a fluctuating input is considered.Then,the calculation of the investment and operating costs of the hydrogen production system for a typical day is based on the life cycle cost.Finally,a layered power scheduling optimization method is proposed to reasonably distribute the power of the electrolyzer and energy storage system in a hydrogen production system.In the up-layer optimization,the PV power absorbed by the hydrogen production system was optimized using MALTAB+Gurobi.In low-layer optimization,the power allocation between the PEMEL and battery energy storage system(BESS)is optimized using a non-dominated sorting genetic algorithm(NSGA-Ⅱ)combined with the firefly algorithm(FA).A better optimization result,characterized by lower degradation and total costs,was obtained using the method proposed in this study.The improved algorithm can search for a better population and obtain optimization results in fewer iterations.As a calculation example,data from a PV power station in northwest China were used for optimization,and the effectiveness and rationality of the proposed optimization method were verified. 展开更多
关键词 pv electrolysis of water Proton exchange membrane electrolyzer Performance attenuation Degradation cost Power scheduling optimization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部