期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Impedance Modeling and Stability Analysis of PV Grid-connected Inverter Systems Considering Frequency Coupling 被引量:10
1
作者 Shaojian Song Ze Wei +2 位作者 Yuzhang Lin Bin Liu Hui Liu 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2020年第2期279-290,共12页
Impedance analysis is an effective method to analyze the oscillation issue associated with grid-connected photovoltaic systems.However,the existing impedance modeling of a gridconnected photovoltaic inverter usually o... Impedance analysis is an effective method to analyze the oscillation issue associated with grid-connected photovoltaic systems.However,the existing impedance modeling of a gridconnected photovoltaic inverter usually only considers the effect of a single perturbation frequency,ignoring the coupling frequency response between the internal control loops of a grid-connected inverter,which severely affects the accuracy of the stability analysis.Hence,a method of impedance modeling and stability analysis for grid-connected photovoltaic inverters considering cross-coupling frequency is proposed in this paper.First,the generation mechanism of frequency coupling in gridconnected photovoltaic inverters,and the relationship between the coupling frequency and perturbation frequency are analyzed.Secondly,a sequence impedance model of grid-connected photovoltaic systems considering the coupling frequency is established by using the harmonic linearization method.The impact of DC bus voltage control strategy on frequency coupling characteristics of a grid-connected photovoltaic system is evaluated,and the impact of a coupling frequency term on system stability is quantitatively analyzed.Finally,the advantages of the proposed method are verified by several simulations.The results show that the proposed impedance model can accurately predict the potential resonance points of the system,and the coupling frequency characteristics will become much stronger with smaller DC bus capacitance or larger bandwidth of the DC bus controller. 展开更多
关键词 dc bus voltage control frequency coupling grid-connected photovoltaic inverter system(PVs) harmonic linearization sub-synchronous oscillation
原文传递
Improved MPPT Control Strategy for PV Connected to Grid Using IncCond-PSO-MPC Approach
2
作者 Nora Kacimi Abdelhakim Idir +1 位作者 Said Grouni Mohamed Seghir Boucherit 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第3期1008-1020,共13页
This paper proposes a new hybrid maximum power point tracking(MPPT)control strategy for grid-connected solar systems based on Incremental conductance—Particle Swarm Optimization and Model Predictive Controller(IncCon... This paper proposes a new hybrid maximum power point tracking(MPPT)control strategy for grid-connected solar systems based on Incremental conductance—Particle Swarm Optimization and Model Predictive Controller(IncCond-PSOMPC).The purpose of the suggested method is to create as much power as feasible from a PV system during environmental changes,then transfer it to the power grid.To accomplish this,a hybrid combination of incremental conductance(IncCond)and particle swarm optimization(PSO)is proposed to locate maximum power,followed by model predictive control(MPC)to track maximum power and control the boost converter to achieve high performance regardless of parameter variations.A two-level inverter,likewise,controlled by Model Predictive Control,is employed to inject the PV power generated.In this application,the MPC is based on minimizing the difference between the reference and prediction powers,which is computed to select the switching state of the inverter.The proposed system is simulated and evaluated in a variety of dynamic conditions using Matlab/Simulink.Results reveal that the proposed control mechanism is effective at tracking the maximum power point(MPP)with fewer power oscillations. 展开更多
关键词 dc/dc boost converter grid-connected PV incremental conductance particle swarm optimization and model predictive controller(IncCond-PSO-MPC) maximum power point tracking(MPPT) photovoltaic(PV)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部