Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynami...Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynamic simulation model is first established. In view of close coupling and non-linear relationships between variables, the intelligent auto-adapted PI decoupling control method is used. From the simulation results it is found that, by bringing quadratic performance index in the single neuron, constructing adaptive PI controller, and adjusting gas flow rates through the second pressure relief valve and air compressor coordinately, both anode and cathode pressures can be maintained at ideal levels.展开更多
This paper presents a novel method of power quality enrichment in a grid-connected photovoltaic(PV) system using a distribution static compensator(DSTATCOM). The paper consists of two-step control processes. In the pr...This paper presents a novel method of power quality enrichment in a grid-connected photovoltaic(PV) system using a distribution static compensator(DSTATCOM). The paper consists of two-step control processes. In the primary step, a fuzzy logic controller(FLC) is employed in the DC-DC converter to extract the peak power point from the PV panel, where the FLC produces a switching signal for the DC-DC converter.In the secondary step, a unit vector template(UVT)/adaptive linear neuron(ADALINE)-based least mean square(LMS) controller is adopted in the DC-AC converter, i. e., voltage source converter(VSC). The input to this VSC is the boosted DC voltage, which originates from the PV panel as a result of DC-DC conversion. The VSC shunted with the power grid is known as a DSTATCOM, which can maintain the power quality in the distribution system. The UVT controller generates reference source currents from the grid voltages and DC-link voltages.The ADALINE-based LMS controller calculates the online weight according to the previous weights by the sensed load current. The UVT/ADALINE-based LMS controller of a DSTATCOM performs several tasks such as maintaining the sinusoidal source current, achieving a unity power factor, and performing reactive power compensation. The reference current extracted from the UVT/ADALINE-based LMS controller is fed to the hysteresis current controller to obtain the desired switching signal for the VSC. A 100 k W solar PV system integrated into a three-phase four-wire distribution system through a four-leg VSC is designed in MATLAB/Simulink. The performances of the FLC and UVT/ADALINE-based LMS controllers are demonstrated under various irradiances as well as constant temperature and nonlinear loading conditions.展开更多
基金Project supported by National High-Technology Research andDevelopment Program of China (Grant No .2002AA517020)
文摘Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynamic simulation model is first established. In view of close coupling and non-linear relationships between variables, the intelligent auto-adapted PI decoupling control method is used. From the simulation results it is found that, by bringing quadratic performance index in the single neuron, constructing adaptive PI controller, and adjusting gas flow rates through the second pressure relief valve and air compressor coordinately, both anode and cathode pressures can be maintained at ideal levels.
文摘This paper presents a novel method of power quality enrichment in a grid-connected photovoltaic(PV) system using a distribution static compensator(DSTATCOM). The paper consists of two-step control processes. In the primary step, a fuzzy logic controller(FLC) is employed in the DC-DC converter to extract the peak power point from the PV panel, where the FLC produces a switching signal for the DC-DC converter.In the secondary step, a unit vector template(UVT)/adaptive linear neuron(ADALINE)-based least mean square(LMS) controller is adopted in the DC-AC converter, i. e., voltage source converter(VSC). The input to this VSC is the boosted DC voltage, which originates from the PV panel as a result of DC-DC conversion. The VSC shunted with the power grid is known as a DSTATCOM, which can maintain the power quality in the distribution system. The UVT controller generates reference source currents from the grid voltages and DC-link voltages.The ADALINE-based LMS controller calculates the online weight according to the previous weights by the sensed load current. The UVT/ADALINE-based LMS controller of a DSTATCOM performs several tasks such as maintaining the sinusoidal source current, achieving a unity power factor, and performing reactive power compensation. The reference current extracted from the UVT/ADALINE-based LMS controller is fed to the hysteresis current controller to obtain the desired switching signal for the VSC. A 100 k W solar PV system integrated into a three-phase four-wire distribution system through a four-leg VSC is designed in MATLAB/Simulink. The performances of the FLC and UVT/ADALINE-based LMS controllers are demonstrated under various irradiances as well as constant temperature and nonlinear loading conditions.