期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Fundamental Physical Constants and Primary Physical Parameters
1
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2023年第1期190-209,共20页
Every four years the Committee on Data for Science and Technology (CODATA) supplies a self-consistent set of values of the basic constants and conversion factors of physics recommended for international use. In 2013, ... Every four years the Committee on Data for Science and Technology (CODATA) supplies a self-consistent set of values of the basic constants and conversion factors of physics recommended for international use. In 2013, the World-Universe Model (WUM) proposed a principally different depiction of the World as an alternative to the picture of the Big Bang Model. This article: 1) Gives the short history of Classical Physics before Special Relativity;2) Calculates Fundamental Physical Constants based on experimentally measured Rydberg constant, Electrodynamic constant, Electron Charge-to-Mass Ratio, and Planck constant;3) Discusses Electrodynamic constant and Speed of Light;4) Considers Dimensionless Fundamental Parameters (Dirac Large Number Q and Dimensionless Rydberg Constant α);5) Calculates Newtonian Constant of Gravitation based on the Inter-connectivity of Primary Physical Parameters;6) Makes a detailed analysis of the Self-consistency of Fundamental Physical Constants and Primary Physical Parameters through the prism of WUM. The performed analysis suggests: 1) Discontinuing using the notion “Vacuum” and its characteristics (Speed of Light in Vacuum, Characteristic Impedance of Vacuum, Vacuum Magnetic Permeability, Vacuum Electric Permittivity);2) Accepting the exact numerical values of Electrodynamic constant, Planck constant, Elementary charge, and Dimensionless Rydberg Constant α. WUM recommends the predicted value of Newtonian Constant of Gravitation in 2018 to be considered in CODATA Recommend Values of the Fundamental Physical Constants 2022. 展开更多
关键词 Classical Physics Fundamental physical constants Electrodynamic constant Speed of Light Dirac Large Number Dimensionless Rydberg constant Newtonian constant of Gravitation Self-Consistency of Fundamental physical constants
下载PDF
Unity Formulas for the Coupling Constants and the Dimensionless Physical Constants
2
作者 Stergios Pellis 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2023年第1期245-294,共50页
In this paper in an elegant way will be presented the unity formulas for the coupling constants and the dimensionless physical constants. We reached the conclusion of the simple unification of the fundamental interact... In this paper in an elegant way will be presented the unity formulas for the coupling constants and the dimensionless physical constants. We reached the conclusion of the simple unification of the fundamental interactions. We will find the formulas for the Gravitational constant. It will be presented that the gravitational fine-structure constant is a simple analogy between atomic physics and cosmology. We will find the expression that connects the gravitational fine-structure constant with the four coupling constants. Perhaps the gravitational fine-structure constant is the coupling constant for the fifth force. Also will be presented the simple unification of atomic physics and cosmology. We will find the formulas for the cosmological constant and we will propose a possible solution for the cosmological parameters. Perhaps the shape of the universe is Poincare dodecahedral space. This article will be followed by the energy wave theory and the fractal space-time theory. 展开更多
关键词 Fine-Structure constant Proton To Electron Mass Ratio Dimensionless physical constants Coupling constant Gravitational constant Avogadro’s Number Fundamental Interactions Gravitational Fine-Structure constant Cosmological constant
下载PDF
PHYSICAL CONSTANTS
3
作者 K.A.Olive K.Agashe +208 位作者 C.Amsler M.Antonelli J.-F.Arguin D.M.Asner H.Baer H.R.Band R.M.Barnett T.Basaglia C.W.Bauer J.J.Beatty V.I.Belousov J.Beringer G.Bernardi S.Bethke H.Bichsel O.Biebe E.Blucher S.Blusk G.Brooijmans O.Buchmueller V.Burkert M.A.Bychkov R.N.Cahn M.Carena A.Ceccucci A.Cerr D.Chakraborty M.-C.Chen R.S.Chivukula K.Copic G.Cowan O.Dahl G.D'Ambrosio T.Damour D.de Florian A.de Gouvea T.DeGrand P.de Jong G.Dissertor B.A.Dobrescu M.Doser M.Drees H.K.Dreiner D.A.Edwards S.Eidelman J.Erler V.V.Ezhela W.Fetscher B.D.Fields B.Foster A.Freitas T.K.Gaisser H.Gallagher L.Garren H.-J.Gerber G.Gerbier T.Gershon T.Gherghetta S.Golwala M.Goodman C.Grab A.V.Gritsan C.Grojean D.E.Groom M.Grnewald A.Gurtu T.Gutsche H.E.Haber K.Hagiwara C.Hanhart S.Hashimoto Y.Hayato K.G.Hayes M.Heffner B.Heltsley J.J.Hernandez-Rey K.Hikasa A.Hocker J.Holder A.Holtkamp J.Huston J.D.Jackson K.F.Johnson T.Junk M.Kado D.Karlen U.F.Katz S.R.Klein E.Klempt R.V.Kowalewski F.Krauss M.Kreps B.Krusche Yu.V.Kuyanov Y.Kwon O.Lahav J.Laiho P.Langacker A.Liddle Z.Ligeti C.-J.Lin T.M.Liss L.Littenberg K.S.Lugovsky S.B.Lugovsky F.Maltoni T.Mannel A.V.Manohar W.J.Marciano A.D.Martin A.Masoni J.Matthews D.Milstead P.Molaro K.Monig F.Moortgat M.J.Mortonson H.Murayama K.Nakamura M.Narain P.Nason S.Navas M.Neubert P.Nevski Y.Nir L.Pape J.Parsons C.Patrignani J.A.Peacock M.Pennington S.T.Petcov Kavli IPMU A.Piepke A.Pomarol A.Quadt S.Raby J.Rademacker G.Raffel B.N.Ratcliff P.Richardson A.Ringwald S.Roesler S.Rolli A.Romaniouk L.J.Rosenberg J L.Rosner G.Rybka C.T.Sachrajda Y.Sakai G.P.Salam S.Sarkar F.Sauli O.Schneider K.Scholberg D.Scott V.Sharma S.R.Sharpe M.Silari T.Sjostrand P.Skands J.G.Smith G.F.Smoot S.Spanier H.Spieler C.Spiering A.Stahl T.Stanev S.L.Stone T.Sumiyoshi M.J.Syphers F.Takahashi M.Tanabashi J.Terning L.Tiator M.Titov N.P.Tkachenko N.A.Tornqvist D.Tovey G.Valencia G.Venanzoni M.G.Vincter P.Vogel A.Vogt S.P.Wakely W.Walkowiak C.W.Walter D.R.Ward G.Weiglein D.H.Weinberg E.J.Weinberg M.White L.R.Wiencke C.G.Wohl L.Wolfenstein J.Womersley C.L.Woody R.L.Workman A.Yamamoto W.-M.Yao G.P.Zeller O.V.Zenin J.Zhang R.-Y.Zhu F.Zimmermann P.A.Zyla G.Harper V.S.Lugovsky P.Schaffner 《Chinese Physics C》 SCIE CAS CSCD 2014年第9期109-109,共1页
Table 1.1. Reviewed 2013 by P.J. Mohr (NIST). Mainly from the “CODATA Recommended Values of the Fundamental Physical Constants: 2010” by P.J. Mohr, B.N. Taylor, and D.B. Newell in Rev. Mod. Phys. 84, 1527 (2012... Table 1.1. Reviewed 2013 by P.J. Mohr (NIST). Mainly from the “CODATA Recommended Values of the Fundamental Physical Constants: 2010” by P.J. Mohr, B.N. Taylor, and D.B. Newell in Rev. Mod. Phys. 84, 1527 (2012). The last group of constants (beginning with the Fermi coupling constant) comes from the Particle Data Group. The figures in parentheses after the values give the 1-standard-deviation uncertainties in the last digits; 展开更多
关键词 PLANCK physical constantS
原文传递
Unleashing the Power of Information Theory: Enhancing Accuracy in Modeling Physical Phenomena 被引量:1
4
作者 Boris Menin 《Journal of Applied Mathematics and Physics》 2023年第3期760-779,共20页
When building a model of a physical phenomenon or process, scientists face an inevitable compromise between the simplicity of the model (qualitative-quantitative set of variables) and its accuracy. For hundreds of yea... When building a model of a physical phenomenon or process, scientists face an inevitable compromise between the simplicity of the model (qualitative-quantitative set of variables) and its accuracy. For hundreds of years, the visual simplicity of a law testified to the genius and depth of the physical thinking of the scientist who proposed it. Currently, the desire for a deeper physical understanding of the surrounding world and newly discovered physical phenomena motivates researchers to increase the number of variables considered in a model. This direction leads to an increased probability of choosing an inaccurate or even erroneous model. This study describes a method for estimating the limit of measurement accuracy, taking into account the stage of model building in terms of storage, transmission, processing and use of information by the observer. This limit, due to the finite amount of information stored in the model, allows you to select the optimal number of variables for the best reproduction of the observed object and calculate the exact values of the threshold discrepancy between the model and the phenomenon under study in measurement theory. We consider two examples: measurement of the speed of sound and measurement of physical constants. 展开更多
关键词 Finite Information Quantity International System of Units MODELLING physical constant Speed of Sound
下载PDF
Fundamental Harmonic Power Laws Relating the Frequency Equivalents of the Electron, Bohr Radius, Rydberg Constant with the Fine Structure, Planck’s Constant, 2 and π 被引量:1
5
作者 Donald William Chakeres 《Journal of Modern Physics》 2016年第13期1801-1810,共10页
We evaluate three of the quantum constants of hydrogen, the electron, e<sup>-</sup>, the Bohr radius, a<sub>0</sub>, and the Rydberg constants, , as natural unit frequency equivalents, v. This ... We evaluate three of the quantum constants of hydrogen, the electron, e<sup>-</sup>, the Bohr radius, a<sub>0</sub>, and the Rydberg constants, , as natural unit frequency equivalents, v. This is equivalent to Planck’s constant, h, the speed of light, c, and the electron charge, e, all scaled to 1 similar in concept to the Hartree atomic, and Planck units. These frequency ratios are analyzed as fundamental coupling constants. We recognize that the ratio of the product of 8π<sup>2</sup>, the v<sub>e</sub><sub>-</sub> times the v<sub>R</sub> divided by v<sub>a</sub><sub>0</sub> squared equals 1. This is a power law defining Planck’s constant in a dimensionless domain as 1. We also find that all of the possible dimensionless and dimensioned ratios correspond to other constants or classic relationships, and are systematically inter-related by multiple power laws to the fine structure constant, α;and the geometric factors 2, and π. One is related to an angular momentum scaled by Planck’s constant, and another is the kinetic energy law. There are harmonic sinusoidal relationships based on 2π circle geometry. In the dimensionless domain, α is equivalent to the free space constant of permeability, and its reciprocal to permittivity. If any two quanta are known, all of the others can be derived within power laws. This demonstrates that 8π2 represents the logical geometric conversion factor that links the Euclid geometric factors/three dimensional space, and the quantum domain. We conclude that the relative scale and organization of many of the fundamental constants even beyond hydrogen are related to a unified power law system defined by only three physical quanta of v<sub>e</sub><sub>-</sub>, v<sub>R</sub>, and v<sub>a</sub><sub>0</sub>. 展开更多
关键词 Fundamental physical constants Unification Models Hydrogen ELECTRON Bohr Radius Rydberg constant Fine Structure constant
下载PDF
The Derivation of the Cosmic Microwave Background Radiation Peak Spectral Radiance, Planck Time, and the Hubble Constant from the Neutron and Hydrogen 被引量:1
6
作者 Donald William Chakeres Vola Andrianarijaona 《Journal of Modern Physics》 2016年第6期573-586,共14页
Purpose: The cosmic microwave background radiation, CMB, is fundamental to observational cosmology, and is believed to be a remnant from the Big Bang. The CMB, Planck time, t<sub>P</sub>, and the Hubble co... Purpose: The cosmic microwave background radiation, CMB, is fundamental to observational cosmology, and is believed to be a remnant from the Big Bang. The CMB, Planck time, t<sub>P</sub>, and the Hubble constant, H<sub>0</sub>, are important cosmologic constants. The goal is to accurately derive and demonstrate the inter-relationships of the CMB peak spectral radiance frequency, t<sub>P</sub>, and H<sub>0</sub> from neutron and hydrogen quantum data only. Methods: The harmonic neutron hypothesis, HNH, evaluates physical phenomena within a finite consecutive integer and exponential power law harmonic fraction series that are scaled by a fundamental frequency of the neutron as the exponent base. The CMB and the H<sub>0</sub> are derived from a previously published method used to derive t<sub>P</sub>. Their associated integer exponents are respectively +1/2, −3/4, and −128/35. Results: Precise mathematical relationships of these three constants are demonstrated. All of the derived values are within their known observational values. The derived and known values are: ν<sub>CMB</sub>, 160.041737 (06) × 10<sup>9</sup> Hz, ~160 × 10<sup>9</sup> Hz;2.72519 K, 2.72548 ± 0.00057 K, H<sub>0</sub> 2.29726666 (11) × 10<sup>−18</sup> s<sup>−1</sup>, ~2.3 × 10<sup>−18</sup> s<sup>−1</sup>;and t<sub>P</sub> 5.3911418 (3) × 10<sup>−44</sup> s, 5.39106 (32) × 10<sup>−44</sup> s. Conclusion: The cosmic fundamental constants t<sub>P</sub>, H<sub>0</sub>, and CMB are mathematically inter-related constants all defined by gravity. They are also directly derivable from the quantum properties of the neutron and hydrogen within a harmonic power law. 展开更多
关键词 Cosmic Microwave Background Radiation NEUTRON Fundamental physical constants Unification Models HYDROGEN Planck Time Hubble constant
下载PDF
Definition and expression of non-symmetric physical properties in space for uniaxial crystals
7
作者 Xiaojie Guo Lijuan Chen +2 位作者 Zeliang Gao Xin Yin Xutang Tao 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期412-420,共9页
The anisotropic physical property is the most noteworthy feature of crystals.In this paper,the subscript change method is used to analyze the sign changes of different tensors describing physical properties in uniaxia... The anisotropic physical property is the most noteworthy feature of crystals.In this paper,the subscript change method is used to analyze the sign changes of different tensors describing physical properties in uniaxial crystals.The distribution of some physical properties in special point groups exhibits non-symmetry in eight quadrants,which should attract the attention of crystal research.The difference between the crystallographic and physical coordinate systems and the lack of crystal symmetry operations are considered to be the origins of the non-symmetry.To avoid ambiguities and difficulties in characterizing and applying crystal physical properties,eight quadrants in space should be clarified.Hence,we proposed the use of piezoelectric properties to define the positive direction of the optical coordinate axis prior to the research and applications of optical properties. 展开更多
关键词 uniaxial crystals effective physical constant space distributions the positive direction of optical coordinate axis
下载PDF
Relationship between the Fundamental Constants of Physics Obtained from the Uncertainty Principle for Energy and Time 被引量:1
8
作者 Stanislaw Olszewski 《Journal of Modern Physics》 2015年第5期622-626,共5页
An attempt is done to calculate the value of the elementary electron charge from its relation to the Planck constant and the speed of light. This relation is obtained, in the first step, from the Pauli analysis of the... An attempt is done to calculate the value of the elementary electron charge from its relation to the Planck constant and the speed of light. This relation is obtained, in the first step, from the Pauli analysis of the strength of the electric field associated with an elementary emission process of energy. In the next step, the uncertainty principle is applied to both the emission time and energy. The theoretical result for e is roughly close to the experimental value of the electron charge. 展开更多
关键词 Fundamental constants of Physics Uncertainty Principle for Energy and Time
下载PDF
Basic Notions of Classical Physics
9
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 2023年第4期1187-1207,共21页
Classical Physics is a branch of Physics that should be described by classical notions, which define emergent phenomena. An Emergent Phenomenon is a property that is a result of simple interactions that work cooperati... Classical Physics is a branch of Physics that should be described by classical notions, which define emergent phenomena. An Emergent Phenomenon is a property that is a result of simple interactions that work cooperatively to create a more complex interaction. Physically, simple interactions occur at a microscopic level, and the collective result can be observed at a macroscopic level. The developed Hypersphere World-Universe Model (WUM) introduces classical notions, when the very first ensemble of particles was created at the cosmological time π<sub>M</sub> ≅ 10<sup>-18</sup> and become possible to introduce the notion “Medium of the World”. We emphasize that Classical Physics is principally different from Quantum Physics that describes quantum objects, which have four-momenta only. Classical Physics is dealing with ensembles of quantum objects! The present paper discusses the Basic Notions of Classical Physics considering a principally different cosmological model WUM, which is, in fact, a Paradigm Shift for Cosmology. WUM is a natural continuation of Classical Physics, and it can already serve as a basis for a New Cosmology proposed by Paul Dirac in 1937. 展开更多
关键词 World-Universe Model Space and Time Aether Dark Matter GRAVITY GRAVITOMAGNETISM Fundamental physical constants Creation of Matter Primary Notions
下载PDF
Decisive Role of Gravitational Parameter G in Cosmology
10
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 2023年第3期611-625,共15页
In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”, and later added the notion of continuous creation of Matter in the World. The Hypersphere World-Uni... In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”, and later added the notion of continuous creation of Matter in the World. The Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing a different mechanism of Matter creation. In this paper, we show that Gravitational parameter G that can be measured directly makes measurable all Cosmological parameters, which cannot be measured directly. 展开更多
关键词 World-Universe Model Fundamental physical constants Primary Cosmological Parameters Dirac Large Number Intergalactic Plasma Medium of the World Age of Universe Maxwell’s Equations
下载PDF
A New Quantum Number Triangular Array That Defines the Internal Organization of Valence Quarks, the Hadron Quark Model, and the CKM Matrix 被引量:1
11
作者 Donald William Chakeres Richard Vento 《Journal of Modern Physics》 2016年第1期145-155,共11页
Purpose: The Harmonic Neutron Hypothesis, HNH, has demonstrated that many of the fundamental physical constants, including the quarks, are associated with partial harmonic fractional exponents, , of a fundamental freq... Purpose: The Harmonic Neutron Hypothesis, HNH, has demonstrated that many of the fundamental physical constants, including the quarks, are associated with partial harmonic fractional exponents, , of a fundamental frequency, v<sub>F</sub>. The model has shown that the properties of the quarks are based on a progression of prime number composites. They also fall on three separate power law lines related to integer factors of the Y-intercept, , of a fundamental electromagnetic line which is scaled by the Rydberg constant, R and Planck’s constant. The quark lines are scaled by the quantum number factors {1, 2, 3}, and their Y-intercepts are referred to as n<sub>bem</sub>. The goal is to present a new proto-quark model in a six-quark inverted triangular array that defines the global organization of the valence quarks, which determines the hadronic quantum numbers, the standard hadron quark model, and the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Methods: The charm, bottom, top quarks are associated with power law line Y-intercept, n<sub>bem</sub> equal to 1;the strange and down quarks with n<sub>bem</sub> equal to 2;and the up quark with n<sub>bem</sub> equal to 3. An inverted equilateral triangular array with three rows arranged from upper row (triangle base) to bottom row (triangle vertex), is associated respectively with n<sub>bem</sub> numbers 1, 2, and 3. The novelty of our perspective thus defines a new global valence quark organization which supersedes the Standard hadron composite quark model. The quarks are ordered via relative mass, partial fractions, and n<sub>bem</sub> quantum number. The top row of our inverted triangle includes the c, b, and t quarks from left to right;the middle row depicts the d and s quarks;and the bottom row, the up quark. Results: Our array depicts a quantum generator of the global organization of the valence quarks defining the composite quark model. The vertices of the triangular array are the up quarks, the midpoints are the down quarks. All weak transitions are from a corner to a midpoint or vice versa. The standard 3 by 3 CKM matrix is generated from the new quark triangle with each up type quark (u, c, and t) transforming to each down type (d, s, and b), with their experimental flavor transition magnitudes given. Conclusion: A new quark quantum number, n<sub>bem</sub>, is an important discovery that generates a new proto-valence quark triangle that secondarily generates the composite quark model and the CKM matrix. 展开更多
关键词 QUARKS Quark Model Neutron Cabibbo-Kobayashi-Maskawa Matrix Fundamental physical constants Fundamental Particles Unification Models
下载PDF
Selection and Justification of a New Initial Level of the Material World 被引量:2
12
作者 Valentyn Nastasenko 《Journal of Applied Mathematics and Physics》 2021年第5期1089-1099,共11页
The work refers to the foundations of the material world, in particular—to the field of quantum physics associated with the initial level—his fundamental physical constants and elementary particles. The study of the... The work refers to the foundations of the material world, in particular—to the field of quantum physics associated with the initial level—his fundamental physical constants and elementary particles. The study of the initial levels of structuring of this formation is necessary for a better understanding of the foundations of the structure Universe. Therefore, the solution of these problems is an urgent and important task, to which the works of many scientists of the world are devoted, from ancient times to the present. However, these tasks have not yet been fully resolved. Their solution is the main goal and scientific novelty of the work performed. For this, <strong>research methods</strong> were used based on the general principles of deduction and movement from simple initial systems to more complex ones, which are substantiated by reliable physical laws. <strong>The research results</strong> are the choice and substantiation of the initial (zero) level of the material world and a system of fundamental physical constants and physical quantities found on their basis, which precede the 1st level—elementary particles. The problems of determining the wave parameters of the gravitational field and the unified of gravitational and electromagnetic fields of the Universe were solved only as a result of the transition to the zero level of the material world. 展开更多
关键词 Levels of Structuring of the Material World Fundamental Physics constants and Elementary Particles
下载PDF
Note on a new fundamental length scale l instead of the Newtonian constant G 被引量:1
13
作者 SHAO LiJing MA BoQiang 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第10期1771-1774,共4页
The newly proposed entropic gravity suggests gravity as an emergent force rather than a fundamental one. In this approach,the Newtonian constant G does not play a fundamental role any more, and a new fundamental const... The newly proposed entropic gravity suggests gravity as an emergent force rather than a fundamental one. In this approach,the Newtonian constant G does not play a fundamental role any more, and a new fundamental constant is required to replace itsposition. This request also arises from some philosophical considerations to contemplate the physical foundations for the unificationof theories. We here consider the suggestion to derive G from more fundamental quantities in the presence of a new fundamentallength scale l, which is suspected to originate from the structure of quantum space-time, and can be measured directly from Lorentz-violating observations. Our results are relevant to the fundamental understanding of physics, and more practically, of natural units,as well as explanations of experimental constraints in searching for Lorentz violation. 展开更多
关键词 physical constants entropic gravity Lorentz violation
原文传递
One Electron Atom in Special Relativity with de Sitter Space-Time Symmetry 被引量:1
14
作者 闫沐霖 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第6期930-952,共23页
The de Sitter invariant Special Relativity (dS-SR) is SR with constant curvature, and a natural extension of usual Einstein SR (E-SR). In this paper, we solve the dS-SR Dirac equation of Hydrogen by means of the a... The de Sitter invariant Special Relativity (dS-SR) is SR with constant curvature, and a natural extension of usual Einstein SR (E-SR). In this paper, we solve the dS-SR Dirac equation of Hydrogen by means of the adiabatic approach and the quasi-stationary perturbation calculations of QM. Hydrogen atom is located in the light cone of the Universe. FRW metric and ACDM cosmological model are used to discuss this issue. To the atom, effects of de Sitter space-time geometry described by Beltrami metric are taken into account. The dS-SR Dirac equation turns out to be a time dependent quantum Hamiltonian system. We reveal that: (i) The fundamental physics constants me, h, e variate adiabatically along with cosmologic time in dS-SR QM framework. But the fine-structure constant α≡ - e^2/(hc) keeps to be invariant; (ii) (2s^1/2 - 2p^1/2)-splitting due to dS-SR QM effects: By means of perturbation theory, that splitting △E(z) are calculated analytically, which belongs to O(1/R^2)-physics of dS-SR QM. Numerically, we find that when |R| = {103 Gly, 104 Gly, 105 Gly}, and z = {1, or 2}, the AE(z) 〉〉 1 (Lamb shift). This indicates that for these cases the hyperfine structure effects due to QED could be ignored, and the dS-SR fine structure effects are dominant. This effect could be used to determine the universal constant R in dS-SR, and be thought as a new physics beyond E-SR. 展开更多
关键词 hydrogen atom special relativity with de sitter space-time symmetry time variation of physical constants Lamb shift time dependent Hamiltonian in quantum mechanics Friedmann-Robertson-Walker (FRW) universe
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部