A numerical model of thermoelectric module (TEM) is created by academic analysis,and the impacts of the resistance ratio and thermoelement size on the output power and thermoelectric efficiency of the TEM are analyz...A numerical model of thermoelectric module (TEM) is created by academic analysis,and the impacts of the resistance ratio and thermoelement size on the output power and thermoelectric efficiency of the TEM are analyzed by the MATLAB numerical calculation.The numerical model is validated by the ANSYS thermal,electrical,and structural coupling simulation.The effects of the variable physical property parameters and contact effect on the output power and thermoelectric efficiency are evaluated,and the concept of aspect ratio optimal domain is proposed,which provides a new design approach for the TEM.展开更多
In a 3-D closed geological body, in case “structural expanding” inside is induced by stress, it can produce the pressure difference between the expanding cell and surrounding rock, then generate a pumping force dire...In a 3-D closed geological body, in case “structural expanding” inside is induced by stress, it can produce the pressure difference between the expanding cell and surrounding rock, then generate a pumping force directed toward the cell and accelerate the directional flow of fluid in the strata. The structural style and conditions of gas reservoir-formation in the Kuqa depression are favorable to the structural pumping. According to similarity principle, a physical modeling of structure formation and gas filling process of the Kela 2 gas field has justified the occurrence of structural pumping and its important role in gas-reservoir formation with high efficiency under the compressive and well-sealed circumstance. Therefore, authors propose that structural pumping is an important mechanism of gas reservoir-formation with high efficiency in the Kuqa depression.展开更多
基金Funded by Guangdong Natural Science Foundation (No.00355991220615019)
文摘A numerical model of thermoelectric module (TEM) is created by academic analysis,and the impacts of the resistance ratio and thermoelement size on the output power and thermoelectric efficiency of the TEM are analyzed by the MATLAB numerical calculation.The numerical model is validated by the ANSYS thermal,electrical,and structural coupling simulation.The effects of the variable physical property parameters and contact effect on the output power and thermoelectric efficiency are evaluated,and the concept of aspect ratio optimal domain is proposed,which provides a new design approach for the TEM.
文摘In a 3-D closed geological body, in case “structural expanding” inside is induced by stress, it can produce the pressure difference between the expanding cell and surrounding rock, then generate a pumping force directed toward the cell and accelerate the directional flow of fluid in the strata. The structural style and conditions of gas reservoir-formation in the Kuqa depression are favorable to the structural pumping. According to similarity principle, a physical modeling of structure formation and gas filling process of the Kela 2 gas field has justified the occurrence of structural pumping and its important role in gas-reservoir formation with high efficiency under the compressive and well-sealed circumstance. Therefore, authors propose that structural pumping is an important mechanism of gas reservoir-formation with high efficiency in the Kuqa depression.