期刊文献+
共找到100篇文章
< 1 2 5 >
每页显示 20 50 100
Physical Layer Encryption of OFDM-PON Based on Quantum Noise Stream Cipher with Polar Code
1
作者 Xu Yinbo Gao Mingyi +3 位作者 Zhu Huaqing Chen Bowen Xiang Lian Shen Gangxiang 《China Communications》 SCIE CSCD 2024年第3期174-188,共15页
Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast e... Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security. 展开更多
关键词 physical layer encryption polar code quantum noise stream cipher
下载PDF
Research on Physical Layer Security in Cognitive Wireless Networks with Multiple Eavesdroppers Based on Resource Allocation Algorithm
2
作者 Yuxin Du Xiaoli He Yongming Huang 《Journal of Computer and Communications》 2023年第3期32-46,共15页
With the rapid development of the Internet of Things (IoT), non-Orthogonal Multiple Access (NOMA) technology and cognitive wireless network are two promising technologies to improve the spectral efficiency of the syst... With the rapid development of the Internet of Things (IoT), non-Orthogonal Multiple Access (NOMA) technology and cognitive wireless network are two promising technologies to improve the spectral efficiency of the system, which have been widely concerned in the field of wireless communication. However, due to the importance of ownership and privacy protection, the IoT system must provide corresponding security mechanisms. From the perspective of improving the transmission security of CR-NOMA system based on cognitive wireless network, and considering the shortcomings of traditional relay cooperative NOMA system, this paper mainly analyzes the eavesdropping channel model of multi-user CR-NOMA system and derives the expressions of system security and rate to improve the security performance of CR-NOMA system. The basic idea of DC planning algorithm and the scheme of sub-carrier power allocation to improve the transmission security of the system were introduced. An algorithm for DC-CR-NOMA was proposed to maximize the SSR of the system and minimize the energy loss. The simulation results show that under the same complexity, the security and speed of the system can be greatly improved compared with the traditional scheme. 展开更多
关键词 Cognitive Radio Networks Non-Orthogonal Multiple Access physical layer Security Sum of Safety Rates
下载PDF
Deep Learning for Wireless Physical Layer: Opportunities and Challenges 被引量:56
3
作者 Tianqi Wang Chao-Kai Wen +3 位作者 Hanqing Wang Feifei Gao Tao Jiang Shi Jin 《China Communications》 SCIE CSCD 2017年第11期92-111,共20页
Machine learning(ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio and communication network. However, its application to the... Machine learning(ML) has been widely applied to the upper layers of wireless communication systems for various purposes, such as deployment of cognitive radio and communication network. However, its application to the physical layer is hampered by sophisticated channel environments and limited learning ability of conventional ML algorithms. Deep learning(DL) has been recently applied for many fields, such as computer vision and natural language processing, given its expressive capacity and convenient optimization capability. The potential application of DL to the physical layer has also been increasingly recognized because of the new features for future communications, such as complex scenarios with unknown channel models, high speed and accurate processing requirements; these features challenge conventional communication theories. This paper presents a comprehensive overview of the emerging studies on DL-based physical layer processing, including leveraging DL to redesign a module of the conventional communication system(for modulation recognition, channel decoding, and detection) and replace the communication system with a radically new architecture based on an autoencoder. These DL-based methods show promising performance improvements but have certain limitations, such as lack of solid analytical tools and use of architectures that are specifically designed for communication and implementation research, thereby motivating future research in this field. 展开更多
关键词 wireless communications deep learning physical layer
下载PDF
Cooperative Jamming for Physical Layer Security in Hybrid Satellite Terrestrial Relay Networks 被引量:8
4
作者 Su Yan Xinyi Wang +2 位作者 Zongling Li Bin Li Zesong Fei 《China Communications》 SCIE CSCD 2019年第12期154-164,共11页
To integrate the satellite communications with the LTE/5G services, the concept of Hybrid Satellite Terrestrial Relay Networks(HSTRNs) has been proposed. In this paper, we investigate the secure transmission in a HSTR... To integrate the satellite communications with the LTE/5G services, the concept of Hybrid Satellite Terrestrial Relay Networks(HSTRNs) has been proposed. In this paper, we investigate the secure transmission in a HSTRN where the eavesdropper can wiretap the transmitted messages from both the satellite and the intermediate relays. To effectively protect the message from wiretapping in these two phases, we consider cooperative jamming by the relays, where the jamming signals are optimized to maximize the secrecy rate under the total power constraint of relays. In the first phase, the Maximal Ratio Transmission(MRT) scheme is used to maximize the secrecy rate, while in the second phase, by interpolating between the sub-optimal MRT scheme and the null-space projection scheme, the optimal scheme can be obtained via an efficient one-dimensional searching method. Simulation results show that when the number of cooperative relays is small, the performance of the optimal scheme significantly outperforms that of MRT and null-space projection scheme. When the number of relays increases, the performance of the null-space projection approaches that of the optimal one. 展开更多
关键词 hybrid satellite terrestrial relay networks physical layer security cooperative jamming
下载PDF
Physical Layer Security for UAV Communications:A Comprehensive Survey 被引量:4
5
作者 Jue Wang Xuanxuan Wang +5 位作者 Ruifeng Gao Chengleyang Lei Wei Feng Ning Ge Shi Jin Tony Q.S.Quek 《China Communications》 SCIE CSCD 2022年第9期77-115,共39页
Due to its high mobility and flexible deployment,unmanned aerial vehicle(UAV)is drawing unprecedented interest in both military and civil applications to enable agile and ubiquitous connectivity.Mainly operating in an... Due to its high mobility and flexible deployment,unmanned aerial vehicle(UAV)is drawing unprecedented interest in both military and civil applications to enable agile and ubiquitous connectivity.Mainly operating in an open environment,UAV communications benefit from dominant line-of-sight links;however,this on the other hand renders the communications more vulnerable to malicious attacks.Recently,physical layer security(PLS)has been introduced to UAV systems as an important complement to the conventional cryptography-based approaches.In this paper,a comprehensive survey on the current achievements of UAV-PLS is conducted.We first introduce the basic concepts including typical static/-mobile UAV deployment scenarios,the unique air-toground channel and aerial nodes distribution models,as well as various roles that a UAV may act when PLS is concerned.Then,we start by reviewing the secrecy performance analysis and enhancing techniques for statically deployed UAV systems,and extend the discussion to the more general scenario where the UAVs’mobility is further exploited.For both cases,respectively,we summarize the commonly adopted methodologies,then describe important works in the litera ture in detail.Finally,potential research directions and challenges are discussed to provide an outlook for future works in the area of UAV-PLS. 展开更多
关键词 physical layer security UAV communications static/mobile UAV deployment air-to-ground channel trajectory optimization
下载PDF
A Physical Layer Network Coding Based Tag Anti-Collision Algorithm for RFID System 被引量:3
6
作者 Cuixiang Wang Xing Shao +1 位作者 Yifan Meng Jun Gao 《Computers, Materials & Continua》 SCIE EI 2021年第1期931-945,共15页
In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,w... In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93. 展开更多
关键词 Radio frequency identification(RFID) tag anti-collision algorithm physical layer network coding binary search tree algorithm
下载PDF
Wireless Physical Layer Security with Imperfect Channel State Information: A Survey 被引量:5
7
作者 Biao He Xiangyun Zhou Thushara D.Abhayapala 《ZTE Communications》 2013年第3期11-19,共9页
Physical layer security is an emerging technique for improving wireless communication security, which is widely regarded as a complement to cryptographic technologies. To design physical layer security techniques for ... Physical layer security is an emerging technique for improving wireless communication security, which is widely regarded as a complement to cryptographic technologies. To design physical layer security techniques for practical scenarios, uncertainty and imperfections in the channel knowledge need to be taken into account. This paper is a survey of recent research on physical layer security that considers imperfect channel state information (CSI) at communication nodes. We first give an overview of the main information-theoretic measures of secrecy performance with imperfect CSI. Then, we describe several signal processing enhancements in secure transmission designs. These enhancements include secure on-off transmission, beamforming with artificial noise, and secure communication assisted by relay nodes or in cognitive radio systems. Recent studies of physical layer security in large-scale decentralized wireless networks are also summarized. Finally, open problems for on-going and future research are discussed. 展开更多
关键词 physical layer security fading channels channel uncertainty imperfect channel state information
下载PDF
Deep Learning Based Physical Layer Security of D2D Underlay Cellular Network 被引量:2
8
作者 Lixin Li Youbing Hu +2 位作者 Huisheng Zhang Wei Liang Ang Gao 《China Communications》 SCIE CSCD 2020年第2期93-106,共14页
In order to improve the physical layer security of the device-to-device(D2D)cellular network,we propose a collaborative scheme for the transmit antenna selection and the optimal D2D pair establishment based on deep le... In order to improve the physical layer security of the device-to-device(D2D)cellular network,we propose a collaborative scheme for the transmit antenna selection and the optimal D2D pair establishment based on deep learning.Due to the mobility of users,using the current channel state information to select a transmit antenna or establish a D2D pair for the next time slot cannot ensure secure communication.Therefore,in this paper,we utilize the Echo State Network(ESN)to select the transmit antenna and the Long Short-Term Memory(LSTM)to establish the D2D pair.The simulation results show that the LSTMbased and ESN-based collaboration scheme can effectively improve the security capacity of the cellular network with D2D and increase the life of the base station. 展开更多
关键词 D2D underlay cellular network physical layer security deep learning transmit antenna selection
下载PDF
Catalyzing Random Access at Physical Layer for Internet of Things:An Intelligence Enabled User Signature Code Acquisition Approach 被引量:1
9
作者 Xiaojie Fang Xinyu Yin +2 位作者 Xuejun Sha Jinghui Qiu Hongli Zhang 《China Communications》 SCIE CSCD 2021年第10期181-192,共12页
Exploiting random access for the underlying connectivity provisioning has great potential to incorporate massive machine-type communication(MTC)devices in an Internet of Things(Io T)network.However,massive access atte... Exploiting random access for the underlying connectivity provisioning has great potential to incorporate massive machine-type communication(MTC)devices in an Internet of Things(Io T)network.However,massive access attempts from versatile MTC devices may bring congestion to the IIo T network,thereby hindering service increasing of IIo T applications.In this paper,an intelligence enabled physical(PHY-)layer user signature code acquisition(USCA)algorithm is proposed to overcome the random access congestion problem with reduced signaling and control overhead.In the proposed scheme,the detector aims at approximating the optimal observation on both active user detection and user data reception by iteratively learning and predicting the convergence of the user signature codes that are in active.The crossentropy based low-complexity iterative updating rule is present to guarantee that the proposed USCA algorithm is computational feasible.A closed-form bit error rate(BER)performance analysis is carried out to show the efficiency of the proposed intelligence USCA algorithm.Simulation results confirm that the proposed USCA algorithm provides an inherent tradeoff between performance and complexity and allows the detector achieves an approximate optimal performance with a reasonable computational complexity. 展开更多
关键词 Internet of Things(IoT) artificial intelligence physical layer CROSS-ENTROPY random access
下载PDF
Physical Layer Authentication Using Ensemble Learning Technique in Wireless Communications 被引量:1
10
作者 Muhammad Waqas Shehr Bano +3 位作者 Fatima Hassan Shanshan Tu Ghulam Abbas Ziaul Haq Abbas 《Computers, Materials & Continua》 SCIE EI 2022年第12期4489-4499,共11页
Cyber-physical wireless systems have surfaced as an important data communication and networking research area.It is an emerging discipline that allows effective monitoring and efficient real-time communication between... Cyber-physical wireless systems have surfaced as an important data communication and networking research area.It is an emerging discipline that allows effective monitoring and efficient real-time communication between the cyber and physical worlds by embedding computer software and integrating communication and networking technologies.Due to their high reliability,sensitivity and connectivity,their security requirements are more comparable to the Internet as they are prone to various security threats such as eavesdropping,spoofing,botnets,man-in-the-middle attack,denial of service(DoS)and distributed denial of service(DDoS)and impersonation.Existing methods use physical layer authentication(PLA),themost promising solution to detect cyber-attacks.Still,the cyber-physical systems(CPS)have relatively large computational requirements and require more communication resources,thus making it impossible to achieve a low latency target.These methods perform well but only in stationary scenarios.We have extracted the relevant features from the channel matrices using discrete wavelet transformation to improve the computational time required for data processing by considering mobile scenarios.The features are fed to ensemble learning algorithms,such as AdaBoost,LogitBoost and Gentle Boost,to classify data.The authentication of the received signal is considered a binary classification problem.The transmitted data is labeled as legitimate information,and spoofing data is illegitimate information.Therefore,this paper proposes a threshold-free PLA approach that uses machine learning algorithms to protect critical data from spoofing attacks.It detects the malicious data packets in stationary scenarios and detects them with high accuracy when receivers are mobile.The proposed model achieves better performance than the existing approaches in terms of accuracy and computational time by decreasing the processing time. 展开更多
关键词 physical layer authentication machine learning cyber-physical systems SECURITY
下载PDF
Toward intelligent wireless communications:Deep learning-based physical layer technologies 被引量:1
11
作者 Siqi Liu Tianyu Wang Shaowei Wang 《Digital Communications and Networks》 SCIE CSCD 2021年第4期589-597,共9页
Advanced technologies are required in future mobile wireless networks to support services with highly diverse requirements in terms of high data rate and reliability,low latency,and massive access.Deep Learning(DL),on... Advanced technologies are required in future mobile wireless networks to support services with highly diverse requirements in terms of high data rate and reliability,low latency,and massive access.Deep Learning(DL),one of the most exciting developments in machine learning and big data,has recently shown great potential in the study of wireless communications.In this article,we provide a literature review on the applications of DL in the physical layer.First,we analyze the limitations of existing signal processing techniques in terms of model accuracy,global optimality,and computational scalability.Next,we provide a brief review of classical DL frameworks.Subsequently,we discuss recent DL-based physical layer technologies,including both DL-based signal processing modules and end-to-end systems.Deep neural networks are used to replace a single or several conventional functional modules,whereas the objective of the latter is to replace the entire transceiver structure.Lastly,we discuss the open issues and research directions of the DL-based physical layer in terms of model complexity,data quality,data representation,and algorithm reliability. 展开更多
关键词 DATA-DRIVEN Deep learning physical layer Wireless communications
下载PDF
Federated Edge Learning for the Wireless Physical Layer:Opportunities and Challenges
12
作者 Yiming Cui Jiajia Guo +2 位作者 Xiangyi Li Le Liang Shi Jin 《China Communications》 SCIE CSCD 2022年第8期15-30,共16页
Deep learning(DL)has been applied to the physical layer of wireless communication systems,which directly extracts environment knowledge from data and outperforms conventional methods either in accuracy or computation ... Deep learning(DL)has been applied to the physical layer of wireless communication systems,which directly extracts environment knowledge from data and outperforms conventional methods either in accuracy or computation complexity.However,most related research works employ centralized training that inevitably involves collecting training data from edge devices.The data uploading process usually results in excessive communication overhead and privacy disclosure.Alternatively,a distributed learning approach named federated edge learning(FEEL)is introduced to physical layer designs.In FEEL,all devices collaborate to train a global model only by exchanging parameters with a nearby access point.Because all datasets are kept local,data privacy is better protected and data transmission overhead can be reduced.This paper reviews the studies on applying FEEL to the wireless physical layer including channel state information acquisition,transmitter,and receiver design,which represent a paradigm shift of the DL-based physical layer design.In the meantime they also reveal several limitations inherent in FEEL,particularly when applied to the wireless physical layer,thus motivating further research efforts in the field. 展开更多
关键词 deep learning federated edge learning wireless communication physical layer
下载PDF
Relay Beamforming Design for Physical Layer Secure Communication via Line Search Algorithm
13
作者 Siqi Chen Cong Sun 《China Communications》 SCIE CSCD 2021年第12期270-284,共15页
This paper considers a physical layer se-curity model in wireless communications.Two legit-imate users communicate through several relays with the presence of an eavesdropper.We jointly design the relay beamforming we... This paper considers a physical layer se-curity model in wireless communications.Two legit-imate users communicate through several relays with the presence of an eavesdropper.We jointly design the relay beamforming weights and minimize the to-tal relay transmit power,while ensuring users’Qual-ity of Services and preventing the information being eavesdropped at the same time.The problem is a robust optimization problem,because of the imper-fect channel state information from users and relays to the eavesdropper.First the original problem is sim-plified,where the high order robust terms are omit-ted.Then we design an iterative algorithm based on line search,by solving two Quadratically Con-strained Quadratic Programming subproblems and a one-dimensional subproblem.Simulation results indi-cate that the proposed algorithm outperforms the state of the arts. 展开更多
关键词 wireless communication physical layer security line search robust optimization
下载PDF
Coalitional Game Based Joint Beamforming and Power Control for Physical Layer Security Enhancement in Cognitive IoT Networks
14
作者 Zhaoye Xu Aiyan Qu Kang An 《China Communications》 SCIE CSCD 2021年第12期139-150,共12页
In this paper,the physical layer se-cure transmission in multi-antenna multi-user cogni-tive internet-of-thing(IoT)network is investigated,where the coalitional game based joint beamform-ing and power control scheme i... In this paper,the physical layer se-cure transmission in multi-antenna multi-user cogni-tive internet-of-thing(IoT)network is investigated,where the coalitional game based joint beamform-ing and power control scheme is proposed to im-prove the achievable security of cognitive IoT de-vices.Specifically,the secondary network consisting of a muti-antenna secondary transmitter,multiple sec-ondary users(SUs),is allowed to access the licensed spectrum resource of primary user(PU)with underlay approach in the presence of an unauthorized eaves-dropper.Based on the Merge-Split-Rule,coalitional game is formulated among distributed secondary users with cooperative receive beamforming.Then,an alter-native optimization method is used to obtain the op-timized beamforming and power allocation schemes by applying the up-downlink duality.The simulation results demonstrate the effectiveness of our proposed scheme in improving the SU’s secrecy rate and system utility while guaranteeing PU’s interference thresh-old. 展开更多
关键词 physical layer secure transmission IOT coalitional game alternative optimization method
下载PDF
A physical layer security scheme for full-duplex communication systems with residual self-interference and non-eavesdropping CSI
15
作者 Weijia Lei Yang Zhou Xiuzhen Lin 《Digital Communications and Networks》 SCIE CSCD 2021年第3期352-361,共10页
We discuss the physical layer security scheme in the Full-Duplex(FD)MIMO point-to-point two-way communication system with residual self-interference,in which legitimate nodes send confidential information and null spa... We discuss the physical layer security scheme in the Full-Duplex(FD)MIMO point-to-point two-way communication system with residual self-interference,in which legitimate nodes send confidential information and null space Artificial Noise(AN)while receiving information.Because the Channel State Information(CSI)of the eavesdropper is unavailable,we optimize the covariance matrices of the information signal as well as the allocation of the antenna for transmitting and receiving to minimize the signal power consumption under the target rate constraint.As a result,the power of AN is maximized within the limit of total power,so the interception capability of the eavesdropper is suppressed as much as possible.Since self-interference cannot be completely eliminated,the optimization process of one legitimate node depends on the optimization result of the other.By substituting self-interference power in the secrecy rate formula with its average value,the joint optimization process at the two nodes is transformed into two separate and solvable optimization processes.Then,the Water-Filling Algorithm(WFA)and bisection algorithm are used to get the optimal covariance matrices of the signal.Furthermore,we derive the theoretical lower bound of ergodic achievable secrecy rate under rayleigh channels to evaluate the performance of the scheme.The simulation results show that the theoretical derivation is correct,and the actual achievable rate is very close to the target rate,which means that the approximation in the optimization is feasible.The results also show that secrecy transmission can be realized because a considerable secrecy rate can be achieved. 展开更多
关键词 physical layer security Full-duplex SELF-INTERFERENCE Eavesdropping CSI MULTI-ANTENNA
下载PDF
Evolution of Key Technologies for WiMAX Physical Layer
16
作者 Liu Qiaoyan Yu Qiuxing (Xi’an R&D Department of CDMA Research Institute, Corporation,Xi’an 710065,China) 《ZTE Communications》 2007年第3期15-19,共5页
Despite the rapid development in Worldwide Interoperability for Microwave Access (WiMAX) technologies,key technologies for the Physical Layer (PHY) still need to be further improved so as to achieve highly efficient a... Despite the rapid development in Worldwide Interoperability for Microwave Access (WiMAX) technologies,key technologies for the Physical Layer (PHY) still need to be further improved so as to achieve highly efficient and reliable communication performance,as well as to support a mobile environment with a higher transmisison rate. As an amendment to IEEE 802.16d (for fixed broadband wireless access systems),IEEE 802.16e (for mobile broadband wireless access systems) introduces the Orthogonal Frequency Division Multiplexing (OFDM) and Multiple Input Multiple Output (MIMO) technologies into the PHY,doubling the transmission rate while supporting a certain degree of mobility. In the future,more advanced Air Interface (AI) technology is to be applied in the IEEE 802.16m standard. 展开更多
关键词 WIMAX ACCESS Evolution of Key Technologies for WiMAX physical layer HARQ
下载PDF
Physical Layer Security for MmWave Communications:Challenges and Solutions
17
作者 HE Miao LI Xiangman NI Jianbing 《ZTE Communications》 2022年第4期41-51,共11页
The mmWave communication is a promising technique to enable human commutation and a large number of machine-type commu⁃nications of massive data from various non-cellphone devices like Internet of Things(IoT)devices,a... The mmWave communication is a promising technique to enable human commutation and a large number of machine-type commu⁃nications of massive data from various non-cellphone devices like Internet of Things(IoT)devices,autonomous vehicles and remotely con⁃trolled robots.For this reason,information security,in terms of the confidentiality,integrity and availability(CIA),becomes more important in the mmWave communication than ever since.The physical layer security(PLS),which is based on the information theory and focuses on the secrecy capacity of the wiretap channel model,is a cost effective and scalable technique to protect the CIA,compared with the traditional cryptographic techniques.In this paper,the theory foundation of PLS is briefly introduced together with the typical PLS performance metrics secrecy rate and outage probability.Then,the most typical PLS techniques for mmWave are introduced,analyzed and compared,which are classified into three major categories of directional modulation(DM),artificial noise(AN),and directional precoding(DPC).Finally,several mmWave PLS research problems are briefly discussed,including the low-complexity DM weight vector codebook construction,impact of phase shifter(PS)with finite precision on PLS,and DM-based communications for multiple target receivers. 展开更多
关键词 mmWave communication physical layer security phased array directional modulation
下载PDF
Physical Layer Security for Wireless and Quantum Communications
18
作者 Jinhong Yuan Yixian Yang Nanrun Zhou 《ZTE Communications》 2013年第3期1-2,共2页
his special issue is dedicated to security problems in wireless and quan-turn communications. Papers for this issue were invited, and after peer review, eight were selected for publication. The first part of this issu... his special issue is dedicated to security problems in wireless and quan-turn communications. Papers for this issue were invited, and after peer review, eight were selected for publication. The first part of this issue comprises four papers on recent advances in physical layer security forwireless networks. The second Part comprises another four papers on quantum com- munications. 展开更多
关键词 SECURITY physical layer Security for Wireless and Quantum Communications
下载PDF
Physical-Layer Secret Key Generation for Dual-Task Scenarios
19
作者 Yang Lilin Li Guyue +2 位作者 Guo Tao Xu Hao Hu Aiqun 《China Communications》 SCIE CSCD 2024年第7期252-266,共15页
Physical-layer secret key generation(PSKG)provides a lightweight way for group key(GK)sharing between wireless users in large-scale wireless networks.However,most of the existing works in this field consider only grou... Physical-layer secret key generation(PSKG)provides a lightweight way for group key(GK)sharing between wireless users in large-scale wireless networks.However,most of the existing works in this field consider only group communication.For a commonly dual-task scenario,where both GK and pairwise key(PK)are required,traditional methods are less suitable for direct extension.For the first time,we discover a security issue with traditional methods in dual-task scenarios,which has not previously been recognized.We propose an innovative segment-based key generation method to solve this security issue.We do not directly use PK exclusively to negotiate the GK as traditional methods.Instead,we generate GK and PK separately through segmentation which is the first solution to meet dual-task.We also perform security and rate analysis.It is demonstrated that our method is effective in solving this security issue from an information-theoretic perspective.The rate results of simulation are also consistent with the our rate derivation. 展开更多
关键词 dual-task scenario information-theoretic security physical layer security secret group key generation
下载PDF
A Practical Regular LDPC Coded Scheme for Physical-Layer Information Security
20
作者 Du Junyi 《China Communications》 SCIE CSCD 2024年第5期190-201,共12页
In this paper,we aim to design a practical low complexity low-density parity-check(LDPC)coded scheme to build a secure open channel and protect information from eavesdropping.To this end,we first propose a punctured L... In this paper,we aim to design a practical low complexity low-density parity-check(LDPC)coded scheme to build a secure open channel and protect information from eavesdropping.To this end,we first propose a punctured LDPC coded scheme,where the information bits in a codeword are punctured and only the parity check bits are transmitted to the receiver.We further propose a notion of check node type distribution and derive multi-edge type extrinsic information transfer functions to estimate the security performance,instead of the well-known weak metric bit error rate.We optimize the check node type distribution in terms of the signal-to-noise ratio(SNR)gap and modify the progressive edge growth algorithm to design finite-length codes.Numerical results show that our proposed scheme can achieve a lower computational complexity and a smaller security gap,compared to the existing scrambling and puncturing schemes. 展开更多
关键词 extrinsic information transfer function physical layer scheme secure open channel security gap
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部