To evaluate the downscaling ability with respect to tropical cyclones(TCs)near China and its sensitivity to the model physics representation,the authors performed a multi-physics ensemble simulation with the regional ...To evaluate the downscaling ability with respect to tropical cyclones(TCs)near China and its sensitivity to the model physics representation,the authors performed a multi-physics ensemble simulation with the regional Climate-Weather Research and Forecasting(CWRF)model at a 30 km resolution driven by ERA-Interim reanalysis data.The ensemble consisted of 28 integrations during 1979-2016 with varying CWRF physics configurations.Both CWRF and ERA-Interim can generally capture the seasonal cycle and interannual variation of the TC number near China,but evidently underestimate them.The CWRF downscaling and its multi-physics ensemble can notably reduce the underestimation and significantly improve the simulation of the TC occurrences.The skill enhancement is especially large in terms of the interannual variation,which is most sensitive to the cumulus scheme,followed by the boundary layer,surface and radiation schemes,but weakly sensitive to the cloud and microphysics schemes.Generally,the Noah surface scheme,CAML(CAM radiation scheme as implemented by Liang together with the diagnostic cloud cover scheme of Xu and Randall(1996))radiation scheme,prognostic cloud scheme,and Thompson microphysics scheme stand out for their better performance in simulating the interannual variation of TC number.However,the Emanuel cumulus and MYNN boundary layer schemes produce severe interannual biases.Our study provides a valuable reference for CWRF application to improve the understanding and prediction of TC activity.展开更多
基金supported by the National Climate Center of China under Grants 2211011816501。
文摘To evaluate the downscaling ability with respect to tropical cyclones(TCs)near China and its sensitivity to the model physics representation,the authors performed a multi-physics ensemble simulation with the regional Climate-Weather Research and Forecasting(CWRF)model at a 30 km resolution driven by ERA-Interim reanalysis data.The ensemble consisted of 28 integrations during 1979-2016 with varying CWRF physics configurations.Both CWRF and ERA-Interim can generally capture the seasonal cycle and interannual variation of the TC number near China,but evidently underestimate them.The CWRF downscaling and its multi-physics ensemble can notably reduce the underestimation and significantly improve the simulation of the TC occurrences.The skill enhancement is especially large in terms of the interannual variation,which is most sensitive to the cumulus scheme,followed by the boundary layer,surface and radiation schemes,but weakly sensitive to the cloud and microphysics schemes.Generally,the Noah surface scheme,CAML(CAM radiation scheme as implemented by Liang together with the diagnostic cloud cover scheme of Xu and Randall(1996))radiation scheme,prognostic cloud scheme,and Thompson microphysics scheme stand out for their better performance in simulating the interannual variation of TC number.However,the Emanuel cumulus and MYNN boundary layer schemes produce severe interannual biases.Our study provides a valuable reference for CWRF application to improve the understanding and prediction of TC activity.