This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(...This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.展开更多
Mechanical properties of shales are key parameters influencing hydrocarbon production – impacting borehole stability, hydraulic fracture extension and microscale variations in in situ stress. We use Ordovician shale(...Mechanical properties of shales are key parameters influencing hydrocarbon production – impacting borehole stability, hydraulic fracture extension and microscale variations in in situ stress. We use Ordovician shale(Sichuan Basin, China) as a type-example to characterize variations in mineral particle properties at microscale including particle morphology, form of contact and spatial distribution via mineral liberation analysis(MLA) and scanning electron microscopy(SEM). Deformation-based constitutive models are then built using finite element methods to define the impact of various architectures of fracture and mineral distributions at nanometer scale on the deformation characteristics at macroscale.Relative compositions of siliceous, calcareous and clay mineral particles are shown to be the key factors influencing brittleness. Shales with similar mineral composition show a spectrum of equivalent medium mechanical properties due to differing particle morphology and mineral heterogeneity. The predominance of small particles and/or point-point contacts are conducive to brittle failure, in general, and especially so when quartz-rich. Fracture morphology, length and extent of filling all influence shale deformability. High aspect-ratio fractures concentrate stress at fracture tips and are conducive to extension, as when part-filled by carbonate minerals. As fracture spacing increases, stress transfer between adjacent fractures weakens, stress concentrations are amplified and fracture extension is favored. The higher the fractal dimension of the fracture and heterogeneity of the host the more pervasive the fractures. Moreover, when fractures extend, their potential for intersection and interconnection contributes to a reduction in strength and the promotion of brittle failure. Thus, these results provide important theoretical insights into the role of heterogeneity on the deformability and strength of shale reservoirs with practical implications for their stimulation and in the recovery of hydrocarbons from them.展开更多
Mg_5Al_(2.4)Zr_(1.7)O_(12) metastable phase was successfully synthesized from analytical-grade Mg O,α-Al_2O_3,MgAl_2O_4,and ZrO_2 under an N_2 atmosphere.The sintering temperature was varied from 1650 to 1780°C,...Mg_5Al_(2.4)Zr_(1.7)O_(12) metastable phase was successfully synthesized from analytical-grade Mg O,α-Al_2O_3,MgAl_2O_4,and ZrO_2 under an N_2 atmosphere.The sintering temperature was varied from 1650 to 1780°C,and the highest amount of Mg_5Al_(2.4)Zr_(1.7)O_(12) appeared in the composite material when the sintering temperature was 1760°C.According to our research of the formation mechanism of Mg_5Al_(2.4)Zr_(1.7)O_(12),the formation and growth of MgAl_2O_4 dominated when the temperature was not higher than 1650°C.When the temperature was higher than 1650°C,MgO and ZrO_2 tended to diffuse into MgAl_2O_4 and the Mg_5Al_(2.4)Zr_(1.7)O_(12) solid solution was formed.When the temperature reached 1760°C,the formation of Mg_5Al_(2.4)Zr_(1.7)O_(12) was completed.The effect of Mg Al_2O_4 spinel crystals was also studied,and their introduction into the composite material promoted the formation and growth of Mg_5Al_(2.4)Zr_(1.7)O_(12).A highly dispersed MgO–Mg Al_2O_4–ZrO_2 composite material was prepared through the decomposition of the Mg_5Al_(2.4)Zr_(1.7)O_(12) metastable phase.The as-prepared composite material showed improved overall physical properties because of the good dispersion of MgO,MgAl_2O_4,and ZrO_2 phases.展开更多
We studied the effects of nanoparticles of organo-silane(NOS) compounds in the size range of20–80 nm on physical and mechanical properties in medium density fiberboard,and used NOS at four consumption levels of 0,5...We studied the effects of nanoparticles of organo-silane(NOS) compounds in the size range of20–80 nm on physical and mechanical properties in medium density fiberboard,and used NOS at four consumption levels of 0,50,100,and 150 g kg-1dry wood fibers.Density of all treatments was kept constant at 0.67 g cm-3.The water-repellent property of organo-silane significantly reduced water absorption(WA) and thickness swelling but mechanical properties declined due to the reduced proportion of wood-fiber as organo-silane was added to the matrix:the compression ratio of MDF panels and the integrity among wood-fibers both declined,resulting in reduced mechanical properties.We recommend use of 50 g of NOS/kg wood-fiber to improve WA and thickness swelling while retaining acceptable mechanical properties.展开更多
In this paper, the authors aim to propose the use of waste plastics as a binder in a coconut shell reinforcement for the development of an 8/6 size composite rafter to replace the natural 8/6 size backbone in construc...In this paper, the authors aim to propose the use of waste plastics as a binder in a coconut shell reinforcement for the development of an 8/6 size composite rafter to replace the natural 8/6 size backbone in construction. Following a study into the choice of the best proportions, a total of 30 size 8/6 composite rafters with different proportions of 20%, 25%, 30%, 35%, 40% and 50% plastic content were developed. All the 8/6 composite rafters were subjected to mechanical (3-point bending strength and Monnin hardness) and physical (bulk density and water absorption) characterization analyses. The results show that flexural strength increases from 27.56 MPa to 33.30 MPa for proportions ranging from 20% to 35% plastic content. Above 35% plastic, the strength drops to 19.60 MPa for a 50% plastic content. Similarly, the Monnin hardness drops from 9 mm to 5 mm when the plastic content varies from 20 to 50%. As for the results of the physical characterisation, the values obtained for apparent density vary from 0.89 to 1 for proportions varying from 20% to 35% plastic content and drop to 0.94 for 50% plastic content. As for water absorption, values drop from 6.82% to 2.45% when the plastic content increases from 20% to 50%. These mechanical strengths stabilise at 35% plastic content. The development of an 8/6 chevron composite material based on plastic and coconut shell could therefore be a way of recovering waste and solving the problem of deforestation.展开更多
mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface mo...mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface morphologies of the sintered samples were examined by optical microscope (OM), and the fracture morphologies were observed by scanning electron microscopy (SEM). The physical and mechanical properties such as density, electrical resistivity, microhardness, and tensile strength were also tested. The results show that the silver powder particle size has evident effects on the sintered materials. Comparing with coarse silver powder (5 ktm), homogeneous and fme microstmcture was obtained by fine silver powder (_〈0.5-1am). At the same time, the electrical conductivity, microhardness, and tensile strength of the sin- tered samples with fine silver powder were higher than those of the samples with coarse silver powder. However, silver powder particle size has little influence on the relative densities, which of all samples (both by free and coarse silver powders) is more than 95%. The fracture characteristics are ductile.展开更多
NiO/SDC composites and Ni/SDC cermets for solid oxide fuel cell (SOFC) anode applications were prepared from nickel oxide (NiO) and samada doped ceria (SDC) powders by the powder metallurgy process. The physical...NiO/SDC composites and Ni/SDC cermets for solid oxide fuel cell (SOFC) anode applications were prepared from nickel oxide (NiO) and samada doped ceria (SDC) powders by the powder metallurgy process. The physical and mechanical properties, as well as the microstructure of the NiO/SDC composites and the Ni/SDC cermets were investigated. It is shown that the sintedng temperature of the NiO/SDC composites and NiO content plays an important role in determining the microstructure and properties of the NiO/SDC composites, which, in turn, influences the microstructure, electrical conductivity, and mechanical properties of the Ni/SDC cermets. The present study demonstrated that composition and tprocess parameters must be appropriately selected to optimize the microstructure and the properties of NiO/SDC materials for solid oxide fuel cell applications.展开更多
BN ceramic is an advanced engineering ceramics with excellent thermal shock resistance, good workability and excellent dielectricity.TiB 2 ceramic has excellent electric conductivity,high melting points, and corrosio...BN ceramic is an advanced engineering ceramics with excellent thermal shock resistance, good workability and excellent dielectricity.TiB 2 ceramic has excellent electric conductivity,high melting points, and corrosion resistance to molten metal.Therefore,the composite consisting of BN and TiB 2 ceramics is expected to have a combination of above mentioned properties,thereby can be used as self heating crucible.In this paper,hot pressing technology was used to fabricate the high performance BN TiB 2 composite materials.microstructure and electric conducting mechanism were studied,and the relationship between the microstructure and physical property was discussed.The results show that the microstructure of composites has a great influence on the physical property of composites.The BN TiB 2 composites with excellent mechanical strength and stable resistivity can be obtained by optimizing the processing parameter and controlling the microstructure of composites.展开更多
This study was conducted to evaluate the physico-chemical properties of three sesame varieties: Adi, Bawnji and T-85. Sesame varieties showed significant (p ≤ 0.05) differences on some physical properties, proximate,...This study was conducted to evaluate the physico-chemical properties of three sesame varieties: Adi, Bawnji and T-85. Sesame varieties showed significant (p ≤ 0.05) differences on some physical properties, proximate, mineral, anti-nutritional (phytic acid) and antioxidant compositions. The average values of 1000 seed weight were ranged from (2.74 - 3.16 g) and true density from (1190.66 to 1215.58 kg m-3). The moisture (wb), crude protein, ash, fat, fiber, total carbohydrate, Ca, Zn and Fe (db) were ranged: 3.17% - 3.96%, 22.58% - 24.27%, 4.46% - 6.19%, 50.88% - 52.67%, 5.60% - 6.26%, 8.3% - 11.69%, 1172.08 - 1225.71 mg/100g, 4.23 - 4.45 mg/100g and 10.2 - 10.75 mg/100g, respectively. Phytic acid contents were ranged from 307.61 to 324.91 mg/100g, total phenolics from (23.16 - 25.69 mg GAE/g) and ferric ion reducing power value from (32.33 - 34.53 μmol/g) (db). The results were compared with some other sesame varieties grown worldwide. Results showed that Ethiopian sesame varieties were good source in nutrients and were functional foods for human nutrition and utilization.展开更多
Sandwich structures are comprised of two external faces/skins(usually made of synthetic fiber/resin)and a core between them,being lightweight and with high stiffness.The employment of composite materials such as engin...Sandwich structures are comprised of two external faces/skins(usually made of synthetic fiber/resin)and a core between them,being lightweight and with high stiffness.The employment of composite materials such as engineering materials has achieved more space in various segments of the industry,due to the following properties found:low density,stiffness,resistance to abrasion,impact and corrosion developed along the technological advancement of materials.This study aimed to develop a composite structure sandwich with cork core using in the face resin unsaturated polyester and glass fiber material,in order to obtain a final material with improved mechanical and physical properties compared to a conventional composite,without core.The samples were obtained by pressing process for different volume percentage of glass fiber in order to evaluate the influence of this parameter on the behavior of the material.The different samples were mechanically analyzed using the tests by tensile,bending and hardness,revealing high efficiency,except for the bending test in which the sandwich composite showed lower values compared to the composite standard.It was also performed to test water absorption,thermal and acoustic insulation test achieving satisfactory results and proving the effectiveness of cork in the search for materials with insulating characteristics,thus enabling the use of cork as a raw material for this class of materials contributing to sustainability and helping to generate values and innovation.In addition,it functions as a great thermal and acoustic insulation.展开更多
Composite materials may be composed of several types of fiber and resin.The design of hybrid composites intends to improve the physico-mechanical properties of this kind of materials,compared to standard composites,wh...Composite materials may be composed of several types of fiber and resin.The design of hybrid composites intends to improve the physico-mechanical properties of this kind of materials,compared to standard composites,which consist of epoxy resin matrixes and carbon fibers,which presents low impact resistance.Our goal was the development and characterization of a hybrid material composed of two kinds of fibers,carbon and Kevlar,in the fabric format,joined by epoxy resin matrix.The standard composition is the Composition 1:containing 55%-60%carbon fiber and 40%-45%epoxy resin.The hybrid composite is the Composition 2:that contains 30%-33%carbon fiber,25%-27%Kevlar fiber and 40%-45%of epoxy resin.The composite plates were prepared using a laminator machine and later they were process in a vacuum bag and cured in oven.The study aimed at comparing the physical and mechanical properties of these materials.The mechanical tests were focus on measurements of the tensile,flexural and impact charpy stresses,and physics tests by measures of bulk densities.Through these procedures,we hope to find out data that may be useful for a partial characterization of these products for applications in the aerospace industry.展开更多
The present study aims to develop zirconia-Silica sand nanoparticles composites through powder processing route and to study the physical properties, mechanical properties and microstructure of the composites. Zirconi...The present study aims to develop zirconia-Silica sand nanoparticles composites through powder processing route and to study the physical properties, mechanical properties and microstructure of the composites. Zirconia based silica sand nanoparticles composite with 5, 10, 15 and 20 wt.% were developed through powder processing technique and sintered at 1500 ℃ for two hours. A decreasing trend of green density however an improvement in sintered density was observed. Also the addition of silica sand nanoparticles with 20 wt.% increased the hardness up to 12.45 GPa and microstructures indicated the diffusion mechanism of silica sand nanoparticles into pore sites of the composites.展开更多
Fly Ash Cenospheres(FACs)are obtained from the coal power plants in the form of hollow spherical particles by burning the coal.FAC was started to use in early 1980-1985 as lightweight filler material in producing comp...Fly Ash Cenospheres(FACs)are obtained from the coal power plants in the form of hollow spherical particles by burning the coal.FAC was started to use in early 1980-1985 as lightweight filler material in producing composites of cementitious and at present many researchers are focusing on use of FAC as filler in polymer and metals.In this paper,the systematic review on research activities and application of FAC in manufacturing light weight products are done.The influence of FAC on the physical and mechanical properties of incorporated polymer and alloy-based composites were summarized.Prospects of future for its use were also suggested and summarized in this paper.展开更多
We produced wood–plastic composite board by using sawmill wastage of mahogany(Swietenia macrophylla) wood and low density polyethylene.We used multi-response optimization to optimize the process parameters of compo...We produced wood–plastic composite board by using sawmill wastage of mahogany(Swietenia macrophylla) wood and low density polyethylene.We used multi-response optimization to optimize the process parameters of composite board production including mixing ratio,fire retardant(%) and pressing time(min).We investigated the effects of these three process parameters in the mechanical and physical properties of the composite board.Afterwards,Box–Behnken design was performed as response surface methodology with desirability functions to attain the optimal level of mixing ratio,fire retardant and pressing time(min).The maximum modulus of elasticity(MOE) and modulus of rupture(MOR) were achieved at the optimal conditions of wood plastic mixing ratio of60:40,pressing time of 9 min and zero fire retardant percentage.The optimized MOR and MOE were 13.12 and1,781.0 N mm-2,respectively.展开更多
Research into the fundamental properties of microcapsules and use of the results to develop a wide variety of products in industries such as printing, fast-moving consumer goods, construction, pharmaceuticals, and agr...Research into the fundamental properties of microcapsules and use of the results to develop a wide variety of products in industries such as printing, fast-moving consumer goods, construction, pharmaceuticals, and agrochemicals is a dynamic and ever-progressing field of study. For microcapsules to be effective in providing protection from harsh environments or delivering large payloads, it is essential to have a good understanding of their properties to enable quality control during formulation, storage, and applications. This review aims to outline the commonly used techniques for determining the physicochemical, struc- tural, and mechanical properties of microcapsules, and highlights the interlinked nature of these three areas with respect to the end-use industrial application. This review provides information on techniques that are well supported in the literature, and also examines microcapsule analytical techniques that will become more prevalent as a result of new technological developments or extensions from other areas of study.展开更多
基金This research was supported by the Department of Mining Engineering at the University of Utah.In addition,the lead author wishes to acknowledge the financial support received from the Talent Introduction Project,part of the Elite Program of Shandong University of Science and Technology(No.0104060540171).
文摘This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.
基金supported by the National Natural Science Foundation of China (Grant No. 42072194, U1910205)the Fundamental Research Funds for the Central Universities (800015Z1190, 2021YJSDC02)。
文摘Mechanical properties of shales are key parameters influencing hydrocarbon production – impacting borehole stability, hydraulic fracture extension and microscale variations in in situ stress. We use Ordovician shale(Sichuan Basin, China) as a type-example to characterize variations in mineral particle properties at microscale including particle morphology, form of contact and spatial distribution via mineral liberation analysis(MLA) and scanning electron microscopy(SEM). Deformation-based constitutive models are then built using finite element methods to define the impact of various architectures of fracture and mineral distributions at nanometer scale on the deformation characteristics at macroscale.Relative compositions of siliceous, calcareous and clay mineral particles are shown to be the key factors influencing brittleness. Shales with similar mineral composition show a spectrum of equivalent medium mechanical properties due to differing particle morphology and mineral heterogeneity. The predominance of small particles and/or point-point contacts are conducive to brittle failure, in general, and especially so when quartz-rich. Fracture morphology, length and extent of filling all influence shale deformability. High aspect-ratio fractures concentrate stress at fracture tips and are conducive to extension, as when part-filled by carbonate minerals. As fracture spacing increases, stress transfer between adjacent fractures weakens, stress concentrations are amplified and fracture extension is favored. The higher the fractal dimension of the fracture and heterogeneity of the host the more pervasive the fractures. Moreover, when fractures extend, their potential for intersection and interconnection contributes to a reduction in strength and the promotion of brittle failure. Thus, these results provide important theoretical insights into the role of heterogeneity on the deformability and strength of shale reservoirs with practical implications for their stimulation and in the recovery of hydrocarbons from them.
文摘Mg_5Al_(2.4)Zr_(1.7)O_(12) metastable phase was successfully synthesized from analytical-grade Mg O,α-Al_2O_3,MgAl_2O_4,and ZrO_2 under an N_2 atmosphere.The sintering temperature was varied from 1650 to 1780°C,and the highest amount of Mg_5Al_(2.4)Zr_(1.7)O_(12) appeared in the composite material when the sintering temperature was 1760°C.According to our research of the formation mechanism of Mg_5Al_(2.4)Zr_(1.7)O_(12),the formation and growth of MgAl_2O_4 dominated when the temperature was not higher than 1650°C.When the temperature was higher than 1650°C,MgO and ZrO_2 tended to diffuse into MgAl_2O_4 and the Mg_5Al_(2.4)Zr_(1.7)O_(12) solid solution was formed.When the temperature reached 1760°C,the formation of Mg_5Al_(2.4)Zr_(1.7)O_(12) was completed.The effect of Mg Al_2O_4 spinel crystals was also studied,and their introduction into the composite material promoted the formation and growth of Mg_5Al_(2.4)Zr_(1.7)O_(12).A highly dispersed MgO–Mg Al_2O_4–ZrO_2 composite material was prepared through the decomposition of the Mg_5Al_(2.4)Zr_(1.7)O_(12) metastable phase.The as-prepared composite material showed improved overall physical properties because of the good dispersion of MgO,MgAl_2O_4,and ZrO_2 phases.
基金conducted as a joint research projectfinanced by SRTTU(Iran)UPM(Malaysia)
文摘We studied the effects of nanoparticles of organo-silane(NOS) compounds in the size range of20–80 nm on physical and mechanical properties in medium density fiberboard,and used NOS at four consumption levels of 0,50,100,and 150 g kg-1dry wood fibers.Density of all treatments was kept constant at 0.67 g cm-3.The water-repellent property of organo-silane significantly reduced water absorption(WA) and thickness swelling but mechanical properties declined due to the reduced proportion of wood-fiber as organo-silane was added to the matrix:the compression ratio of MDF panels and the integrity among wood-fibers both declined,resulting in reduced mechanical properties.We recommend use of 50 g of NOS/kg wood-fiber to improve WA and thickness swelling while retaining acceptable mechanical properties.
文摘In this paper, the authors aim to propose the use of waste plastics as a binder in a coconut shell reinforcement for the development of an 8/6 size composite rafter to replace the natural 8/6 size backbone in construction. Following a study into the choice of the best proportions, a total of 30 size 8/6 composite rafters with different proportions of 20%, 25%, 30%, 35%, 40% and 50% plastic content were developed. All the 8/6 composite rafters were subjected to mechanical (3-point bending strength and Monnin hardness) and physical (bulk density and water absorption) characterization analyses. The results show that flexural strength increases from 27.56 MPa to 33.30 MPa for proportions ranging from 20% to 35% plastic content. Above 35% plastic, the strength drops to 19.60 MPa for a 50% plastic content. Similarly, the Monnin hardness drops from 9 mm to 5 mm when the plastic content varies from 20 to 50%. As for the results of the physical characterisation, the values obtained for apparent density vary from 0.89 to 1 for proportions varying from 20% to 35% plastic content and drop to 0.94 for 50% plastic content. As for water absorption, values drop from 6.82% to 2.45% when the plastic content increases from 20% to 50%. These mechanical strengths stabilise at 35% plastic content. The development of an 8/6 chevron composite material based on plastic and coconut shell could therefore be a way of recovering waste and solving the problem of deforestation.
文摘mg-Yb203 electrical contact materials were fabricated by spark plasma sintefing (SPS). The effects of silver powder particle size on the microstructure and properties of the samples were investigated. The surface morphologies of the sintered samples were examined by optical microscope (OM), and the fracture morphologies were observed by scanning electron microscopy (SEM). The physical and mechanical properties such as density, electrical resistivity, microhardness, and tensile strength were also tested. The results show that the silver powder particle size has evident effects on the sintered materials. Comparing with coarse silver powder (5 ktm), homogeneous and fme microstmcture was obtained by fine silver powder (_〈0.5-1am). At the same time, the electrical conductivity, microhardness, and tensile strength of the sin- tered samples with fine silver powder were higher than those of the samples with coarse silver powder. However, silver powder particle size has little influence on the relative densities, which of all samples (both by free and coarse silver powders) is more than 95%. The fracture characteristics are ductile.
基金This work was financially supported by the National Key Fundamental Research and Development Program of China (No. G2000026409).
文摘NiO/SDC composites and Ni/SDC cermets for solid oxide fuel cell (SOFC) anode applications were prepared from nickel oxide (NiO) and samada doped ceria (SDC) powders by the powder metallurgy process. The physical and mechanical properties, as well as the microstructure of the NiO/SDC composites and the Ni/SDC cermets were investigated. It is shown that the sintedng temperature of the NiO/SDC composites and NiO content plays an important role in determining the microstructure and properties of the NiO/SDC composites, which, in turn, influences the microstructure, electrical conductivity, and mechanical properties of the Ni/SDC cermets. The present study demonstrated that composition and tprocess parameters must be appropriately selected to optimize the microstructure and the properties of NiO/SDC materials for solid oxide fuel cell applications.
文摘BN ceramic is an advanced engineering ceramics with excellent thermal shock resistance, good workability and excellent dielectricity.TiB 2 ceramic has excellent electric conductivity,high melting points, and corrosion resistance to molten metal.Therefore,the composite consisting of BN and TiB 2 ceramics is expected to have a combination of above mentioned properties,thereby can be used as self heating crucible.In this paper,hot pressing technology was used to fabricate the high performance BN TiB 2 composite materials.microstructure and electric conducting mechanism were studied,and the relationship between the microstructure and physical property was discussed.The results show that the microstructure of composites has a great influence on the physical property of composites.The BN TiB 2 composites with excellent mechanical strength and stable resistivity can be obtained by optimizing the processing parameter and controlling the microstructure of composites.
文摘This study was conducted to evaluate the physico-chemical properties of three sesame varieties: Adi, Bawnji and T-85. Sesame varieties showed significant (p ≤ 0.05) differences on some physical properties, proximate, mineral, anti-nutritional (phytic acid) and antioxidant compositions. The average values of 1000 seed weight were ranged from (2.74 - 3.16 g) and true density from (1190.66 to 1215.58 kg m-3). The moisture (wb), crude protein, ash, fat, fiber, total carbohydrate, Ca, Zn and Fe (db) were ranged: 3.17% - 3.96%, 22.58% - 24.27%, 4.46% - 6.19%, 50.88% - 52.67%, 5.60% - 6.26%, 8.3% - 11.69%, 1172.08 - 1225.71 mg/100g, 4.23 - 4.45 mg/100g and 10.2 - 10.75 mg/100g, respectively. Phytic acid contents were ranged from 307.61 to 324.91 mg/100g, total phenolics from (23.16 - 25.69 mg GAE/g) and ferric ion reducing power value from (32.33 - 34.53 μmol/g) (db). The results were compared with some other sesame varieties grown worldwide. Results showed that Ethiopian sesame varieties were good source in nutrients and were functional foods for human nutrition and utilization.
文摘Sandwich structures are comprised of two external faces/skins(usually made of synthetic fiber/resin)and a core between them,being lightweight and with high stiffness.The employment of composite materials such as engineering materials has achieved more space in various segments of the industry,due to the following properties found:low density,stiffness,resistance to abrasion,impact and corrosion developed along the technological advancement of materials.This study aimed to develop a composite structure sandwich with cork core using in the face resin unsaturated polyester and glass fiber material,in order to obtain a final material with improved mechanical and physical properties compared to a conventional composite,without core.The samples were obtained by pressing process for different volume percentage of glass fiber in order to evaluate the influence of this parameter on the behavior of the material.The different samples were mechanically analyzed using the tests by tensile,bending and hardness,revealing high efficiency,except for the bending test in which the sandwich composite showed lower values compared to the composite standard.It was also performed to test water absorption,thermal and acoustic insulation test achieving satisfactory results and proving the effectiveness of cork in the search for materials with insulating characteristics,thus enabling the use of cork as a raw material for this class of materials contributing to sustainability and helping to generate values and innovation.In addition,it functions as a great thermal and acoustic insulation.
文摘Composite materials may be composed of several types of fiber and resin.The design of hybrid composites intends to improve the physico-mechanical properties of this kind of materials,compared to standard composites,which consist of epoxy resin matrixes and carbon fibers,which presents low impact resistance.Our goal was the development and characterization of a hybrid material composed of two kinds of fibers,carbon and Kevlar,in the fabric format,joined by epoxy resin matrix.The standard composition is the Composition 1:containing 55%-60%carbon fiber and 40%-45%epoxy resin.The hybrid composite is the Composition 2:that contains 30%-33%carbon fiber,25%-27%Kevlar fiber and 40%-45%of epoxy resin.The composite plates were prepared using a laminator machine and later they were process in a vacuum bag and cured in oven.The study aimed at comparing the physical and mechanical properties of these materials.The mechanical tests were focus on measurements of the tensile,flexural and impact charpy stresses,and physics tests by measures of bulk densities.Through these procedures,we hope to find out data that may be useful for a partial characterization of these products for applications in the aerospace industry.
文摘The present study aims to develop zirconia-Silica sand nanoparticles composites through powder processing route and to study the physical properties, mechanical properties and microstructure of the composites. Zirconia based silica sand nanoparticles composite with 5, 10, 15 and 20 wt.% were developed through powder processing technique and sintered at 1500 ℃ for two hours. A decreasing trend of green density however an improvement in sintered density was observed. Also the addition of silica sand nanoparticles with 20 wt.% increased the hardness up to 12.45 GPa and microstructures indicated the diffusion mechanism of silica sand nanoparticles into pore sites of the composites.
文摘Fly Ash Cenospheres(FACs)are obtained from the coal power plants in the form of hollow spherical particles by burning the coal.FAC was started to use in early 1980-1985 as lightweight filler material in producing composites of cementitious and at present many researchers are focusing on use of FAC as filler in polymer and metals.In this paper,the systematic review on research activities and application of FAC in manufacturing light weight products are done.The influence of FAC on the physical and mechanical properties of incorporated polymer and alloy-based composites were summarized.Prospects of future for its use were also suggested and summarized in this paper.
文摘We produced wood–plastic composite board by using sawmill wastage of mahogany(Swietenia macrophylla) wood and low density polyethylene.We used multi-response optimization to optimize the process parameters of composite board production including mixing ratio,fire retardant(%) and pressing time(min).We investigated the effects of these three process parameters in the mechanical and physical properties of the composite board.Afterwards,Box–Behnken design was performed as response surface methodology with desirability functions to attain the optimal level of mixing ratio,fire retardant and pressing time(min).The maximum modulus of elasticity(MOE) and modulus of rupture(MOR) were achieved at the optimal conditions of wood plastic mixing ratio of60:40,pressing time of 9 min and zero fire retardant percentage.The optimized MOR and MOE were 13.12 and1,781.0 N mm-2,respectively.
文摘Research into the fundamental properties of microcapsules and use of the results to develop a wide variety of products in industries such as printing, fast-moving consumer goods, construction, pharmaceuticals, and agrochemicals is a dynamic and ever-progressing field of study. For microcapsules to be effective in providing protection from harsh environments or delivering large payloads, it is essential to have a good understanding of their properties to enable quality control during formulation, storage, and applications. This review aims to outline the commonly used techniques for determining the physicochemical, struc- tural, and mechanical properties of microcapsules, and highlights the interlinked nature of these three areas with respect to the end-use industrial application. This review provides information on techniques that are well supported in the literature, and also examines microcapsule analytical techniques that will become more prevalent as a result of new technological developments or extensions from other areas of study.