The periodic nonuniform folded waveguides are special structures, the physical dimension of which is between the periodic folded waveguide and the tapering period folded waveguide. Therefore, the synchronization betwe...The periodic nonuniform folded waveguides are special structures, the physical dimension of which is between the periodic folded waveguide and the tapering period folded waveguide. Therefore, the synchronization between the microwave and the electron beam can be maintained in the whole interaction process and the periods are not tapered. In comparison with the tapering period folded waveguide, the theoretical analysis and the technological requirements for this structure are more convenient. In order to study this structure, the space harmonics are analysed, the conditions to make the rn-th space harmonic synchronizing with the electron beam in the whole interaction process are present, and the dispersion curve and the coupling impedance curve are obtained by the simulation software HFSS.展开更多
Three kinds of polymeric materials are taken as example for the verification of linear ex-trapolation method from unified master lines with reduced universal equations on creep and stress relaxation tests. The theoret...Three kinds of polymeric materials are taken as example for the verification of linear ex-trapolation method from unified master lines with reduced universal equations on creep and stress relaxation tests. The theoretical values of long-term mechanical behavior and lifetime for a cured epoxide, polypropylene, poly(methyl-methacrylate), and SBR rubber are directly evaluated with the universal equations on reduced creep compliance and reduced stress relax-ation modulus and are compared with their predicted values by the linear extrapolation from the unified master lines of creep and stress relaxation. The results show that the theoretical values of dimensional stability, bearing ability and lifetime are in an excellent agreement with the predicted values, it shows that the linear extrapolation method is more simple and reliable. The dependences of long-term mechanical behaviors and lifetime on the different aging times are discussed.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos 60532010 and 60401005)
文摘The periodic nonuniform folded waveguides are special structures, the physical dimension of which is between the periodic folded waveguide and the tapering period folded waveguide. Therefore, the synchronization between the microwave and the electron beam can be maintained in the whole interaction process and the periods are not tapered. In comparison with the tapering period folded waveguide, the theoretical analysis and the technological requirements for this structure are more convenient. In order to study this structure, the space harmonics are analysed, the conditions to make the rn-th space harmonic synchronizing with the electron beam in the whole interaction process are present, and the dispersion curve and the coupling impedance curve are obtained by the simulation software HFSS.
基金This work was supported by the National Natural Science Foundation of China (No.50973007).
文摘Three kinds of polymeric materials are taken as example for the verification of linear ex-trapolation method from unified master lines with reduced universal equations on creep and stress relaxation tests. The theoretical values of long-term mechanical behavior and lifetime for a cured epoxide, polypropylene, poly(methyl-methacrylate), and SBR rubber are directly evaluated with the universal equations on reduced creep compliance and reduced stress relax-ation modulus and are compared with their predicted values by the linear extrapolation from the unified master lines of creep and stress relaxation. The results show that the theoretical values of dimensional stability, bearing ability and lifetime are in an excellent agreement with the predicted values, it shows that the linear extrapolation method is more simple and reliable. The dependences of long-term mechanical behaviors and lifetime on the different aging times are discussed.