In this editorial,we discuss the remarkable role of physical energies in the control of cell signaling networks and in the specification of the architectural plan of both somatic and stem cells.In particular,we focus ...In this editorial,we discuss the remarkable role of physical energies in the control of cell signaling networks and in the specification of the architectural plan of both somatic and stem cells.In particular,we focus on the biological relevance of bioelectricity in the pattern control that orchestrates both developmental and regenerative pathways.To this end,the narrative starts from the dawn of the first studies on animal electricity,reconsidering the pioneer work of Harold Saxton Burr in the light of the current achievements.We finally discuss the most recent evidence showing that bioelectric signaling is an essential component of the informational processes that control pattern specification during embryogenesis,regeneration,or even malignant transformation.We conclude that there is now mounting evidence for the existence of a Morphogenetic Code,and that deciphering this code may lead to unprecedented opportunities for the development of novel paradigms of cure in regenerative and precision medicine.展开更多
A cyber physical energy system(CPES)involves a combination of pro-cessing,network,and physical processes.The smart grid plays a vital role in the CPES model where information technology(IT)can be related to the physic...A cyber physical energy system(CPES)involves a combination of pro-cessing,network,and physical processes.The smart grid plays a vital role in the CPES model where information technology(IT)can be related to the physical system.At the same time,the machine learning(ML)modelsfind useful for the smart grids integrated into the CPES for effective decision making.Also,the smart grids using ML and deep learning(DL)models are anticipated to lessen the requirement of placing many power plants for electricity utilization.In this aspect,this study designs optimal multi-head attention based bidirectional long short term memory(OMHA-MBLSTM)technique for smart grid stability predic-tion in CPES.The proposed OMHA-MBLSTM technique involves three subpro-cesses such as pre-processing,prediction,and hyperparameter optimization.The OMHA-MBLSTM technique employs min-max normalization as a pre-proces-sing step.Besides,the MBLSTM model is applied for the prediction of stability level of the smart grids in CPES.At the same time,the moth swarm algorithm(MHA)is utilized for optimally modifying the hyperparameters involved in the MBLSTM model.To ensure the enhanced outcomes of the OMHA-MBLSTM technique,a series of simulations were carried out and the results are inspected under several aspects.The experimental results pointed out the better outcomes of the OMHA-MBLSTM technique over the recent models.展开更多
The virtual synchronous generator(VSG)can simulate synchronous machine’s operation mechanism in the control link of an energy storage converter,so that an electrochemical energy storage power station has the ability ...The virtual synchronous generator(VSG)can simulate synchronous machine’s operation mechanism in the control link of an energy storage converter,so that an electrochemical energy storage power station has the ability to actively support the power grid,from passive regulation to active support.Since energy storage is an important physical basis for realizing the inertia and damping characteristics in VSG control,energy storage constraints of the physical characteristics on the system control parameters are analyzed to provide a basis for the system parameter tuning.In a classic VSG control,its virtual inertia and damping coefficient remain unchanged.When the grid load changes greatly,the constant control strategy most likely result in the grid frequency deviation beyond the stable operation standard limitations.To solve this problem,a comprehensive control strategy considering electrified wire netting demand and energy storage unit state of charge(SOC)is proposed,and an adaptive optimization method of VSG parameters under different SOC is given.The energy storage battery can maintain a safe working state at any time and be smoothly disconnected,which can effectively improve the output frequency performance of energy storage system.Simulation results further demonstrated the effectiveness of the VSG control theoretical analysis.展开更多
Recently,we read with interest the article entitled“Unveiling the Morphogenetic Code:A New Path at the Intersection of Physical Energies and Chemical Signaling”.In this paper,the investigation into the systematic an...Recently,we read with interest the article entitled“Unveiling the Morphogenetic Code:A New Path at the Intersection of Physical Energies and Chemical Signaling”.In this paper,the investigation into the systematic and comprehensive bio-effects of physical energies prompted us to reflect on our research.We believe that ultrasound,which possesses a special physical energy,also has a certain positive regulatory effect on macrophages,and we have already obtained some preliminary research results that support our hypothesis.展开更多
Recently,cyber physical system(CPS)has gained significant attention which mainly depends upon an effective collaboration with computation and physical components.The greatly interrelated and united characteristics of ...Recently,cyber physical system(CPS)has gained significant attention which mainly depends upon an effective collaboration with computation and physical components.The greatly interrelated and united characteristics of CPS resulting in the development of cyber physical energy systems(CPES).At the same time,the rising ubiquity of wireless sensor networks(WSN)in several application areas makes it a vital part of the design of CPES.Since security and energy efficiency are the major challenging issues in CPES,this study offers an energy aware secure cyber physical systems with clustered wireless sensor networks using metaheuristic algorithms(EASCPSMA).The presented EASCPS-MA technique intends to attain lower energy utilization via clustering and security using intrusion detection.The EASCPSMA technique encompasses two main stages namely improved fruit fly optimization algorithm(IFFOA)based clustering and optimal deep stacked autoencoder(OSAE)based intrusion detection.Besides,the optimal selection of stacked autoencoder(SAE)parameters takes place using root mean square propagation(RMSProp)model.The extensive performance validation of the EASCPS-MA technique takes place and the results are inspected under varying aspects.The simulation results reported the improved effectiveness of the EASCPS-MA technique over other recent approaches interms of several measures.展开更多
Objective To determine the thermic effect of food(TEF)in a Chinese mixed diet in young people.Methods During the study,the participants were weighed and examined for body composition every morning.The total energy exp...Objective To determine the thermic effect of food(TEF)in a Chinese mixed diet in young people.Methods During the study,the participants were weighed and examined for body composition every morning.The total energy expenditure(TEE)of the participants was measured by the doubly labeled water method for 7 days,and during this period,basal energy expenditure was measured by indirect calorimetry and physical activity energy expenditure was measured by an accelerometer.The value obtained by subtracting basal energy expenditure and physical activity energy expenditure from TEE was used to calculate TEF.Results Twenty healthy young students(18–30 years;10 male)participated in the study.The energy intake of the participants was not significantly different from the Chinese Dietary Reference Intake of energy(P>0.05).The percentage of energy from protein,fat and carbohydrate were all in the normal range.The intakes of fruits,milk and dietary fiber of the participants were significantly lower than those in the Chinese Dietary Guidelines(P<0.05).There was no significant difference in the body weight of the participants during the experiment(P>0.05).When adjusted for body weight,there was no significant difference in either TEE or basal energy expenditure between the male and female participants(P>0.05).In addition,there was no significant difference in physical activity energy expenditure and TEF between the male and female participants(P>0.05).The percentage of TEF in TEE was 8.73%.Conclusion The percentage of TEF in TEE in a Chinese mixed diet in young people was significantly lower than 10%(P<0.001).A value of 10%is usually considered to be the TEF in mixed diets as a percentage of TEE.展开更多
This paper reports the high-energy proton irradiation effects on GaAs/Ge space solar cells. The solar cells were irradiated by protons with energy of 5-20 MeV at fluence ranging from 1×109 to 7×1013 cm-2, an...This paper reports the high-energy proton irradiation effects on GaAs/Ge space solar cells. The solar cells were irradiated by protons with energy of 5-20 MeV at fluence ranging from 1×109 to 7×1013 cm-2, and then their electric parameters were measured at AM0. It was shown that the Isc, Voc and Pmax decrease as the proton energy increasing, and the degradation is relative to proton irradiation-induced defect with a level of Ec-0.41 eV in irradiated GaAs/Ge cells.展开更多
Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.A...Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.Around the beginning of this century,China Academy of Engineering Physics(CAEP)began to build some experimental facilities for HEDP investigations,among which the Primary Test Stand(PTS),a multi-module pulsed power facility with a nominal current of 10 MA and a current rising time~90 ns,is an important achievement on the roadmap of the electro-magnetically driven inertial confinement fusion(ICF)researches.PTS is the first pulsed power facility beyond 10 TW in China.Therefore,all the technologies have to be demonstrated,and all the engineering issues have to be overcome.In this article,the research outline,key technologies and the preliminary HEDP experiments are reviewed.Prospects on HEDP research on PTS and pulsed power development for the next step are also discussed.展开更多
We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver(LTD)architecture described by Stygar[W.A.Stygar et al.,Phys.Rev.ST Accel.Beams 18,110401(2015)].The driv...We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver(LTD)architecture described by Stygar[W.A.Stygar et al.,Phys.Rev.ST Accel.Beams 18,110401(2015)].The driver will allow multiple,high-energy-density experiments per day in a university environment and,at the same time,will enable both fundamental and integrated experiments that are scalable to larger facilities.In this design,many individual energy storage units(bricks),each composed of two capacitors and one switch,directly drive the target load without additional pulse compression.Ten LTD modules in parallel drive the load.Each module consists of 16 LTD cavities connected in series,where each cavity is powered by 22 bricks connected in parallel.This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance,water-insulated radial transmission lines.The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load.To maximize its experimental value and flexibility,the accelerator is coupled to a modern,multibeam laser facility(four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less)that can provide auxiliary heating of the physics load.The lasers also enable advanced diagnostic techniques such as X-ray Thomson scattering and multiframe and three-dimensional radiography.The coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-densityephysics experiments.展开更多
We review the development of High Energy Density Physics(HEDP)with intense heavy ion beams as a tool to induce extreme states of matter.The development of this field connects intimately to the advances in accelerator ...We review the development of High Energy Density Physics(HEDP)with intense heavy ion beams as a tool to induce extreme states of matter.The development of this field connects intimately to the advances in accelerator physics and technology.We will cover the generation of intense heavy ion beams starting from the ion source and follow the acceleration process and transport to the target.Intensity limitations and potential solutions to overcome these limitations are discussed.This is exemplified by citing examples from existing machines at the Gesellschaft fur Schwerionenforschung(GSI-Darmstadt),the Institute of Theoretical and Experimental Physics in Moscow(ITEP-Moscow),and the Institute of Modern Physics(IMP-Lanzhou).Facilities under construction like the FAIR facility in Darmstadt and the High Intensity Accelerator Facility(HIAF),proposed for China will be included.Developments elsewhere are covered where it seems appropriate along with a report of recent results and achievements.展开更多
The work of Chinese scientists conducted at the Joint Institute for Nuclear Research(JINR)(1956–1965)was inextricably linked to the Sino-Soviet relations in the 1950 s–1960 s.During the early stage of the JINR,with ...The work of Chinese scientists conducted at the Joint Institute for Nuclear Research(JINR)(1956–1965)was inextricably linked to the Sino-Soviet relations in the 1950 s–1960 s.During the early stage of the JINR,with the aid of advanced equipment and the international cooperation mechanism,Chinese scientists yielded significant results,such as the discovery of the antisigma-minus hyperon and the proof of the law of partial conservation of axial current(PCAC).After the Sino-Soviet split,Chinese scientists’activities at the institute were hampered by political tensions,eventually resulting in China’s withdrawal from the JINR in 1965.But through the involvement at the JINR,Chinese scientists were trained in scientific practices and participated in international exchange and cooperation which turned them into a new force in China’s nuclear industry,boosting its nuclear weapons,particle physics theory,and accelerator technology.In the meantime,the scientists’activities extended the international influence of the JINR.The withdrawal of China from the institute impacted both the JINR and the development of science in China.展开更多
Objective:To infer the training load from the characteristics of heart rate changes of elite sprinters during maximum intensity training.Methods:Different training loads were determined according to different running ...Objective:To infer the training load from the characteristics of heart rate changes of elite sprinters during maximum intensity training.Methods:Different training loads were determined according to different running distances.Multi-person running in the same group was used to collect the heart rate data of elite sprinters during speed training.Results:the heart rate level was directly related to the exercise load.During the maximum intensity exercise,the heart rate generally increased for about 12 s after the race,which was about 110%of the end-point heart rate.Compared with the low load group(60m),the heart rate of the high load group(100m)continued to rise,but the maximum heart rate level was higher than that of the low load group.The exercise intensity and heart rate change rate of the low load group are greater,the work done by the high load group is more,and the envelope area of the heart rate curve is larger.During intermittent training,under the condition of controlling the interval between groups,the heart rate curve envelope area of the low load group is small,the physical recovery is good,the parameter consistency of each group is good,the heart rate curve envelope area of the high load group is large,and the heart rate response decreases gradually.展开更多
A cosmological model for the very early universe is proposed which may modify the present point of view of physicists and astrophysicists, concerning the very early universe at a miniscule fraction of a second, approx...A cosmological model for the very early universe is proposed which may modify the present point of view of physicists and astrophysicists, concerning the very early universe at a miniscule fraction of a second, approximately 10<sup>-60</sup> seconds after the Big Bang. The model proposes the presence of a primordial s-particle that, following the Big Bang, was violently ejected in all spatial directions together with extremely high-frequency radiation that dominates this era. The proposed s-particles underwent two geometrical phase transitions in space-time that led to the formation of the known fundamental particles (i.e., dark matter, quarks, electrons, neutrinos, etc.). Furthermore, in the model, the four fundamental forces may be accommodated within one structural framework. It shows that the electronic charge is not a fundamental quantity (intrinsic property of the particle), but rather that it can be derived from the tangential velocity of the s-particle. Moreover, it appears that the masses of the fundamental particles are proportional to the curvature of the path of the s-particle.展开更多
This article first presents an overview of the Internationa] Symposium on Lepton-Photon Interactions (LP’95) and briefly introduce Chinese research achievements in the discipline. It highlights the necessity and impo...This article first presents an overview of the Internationa] Symposium on Lepton-Photon Interactions (LP’95) and briefly introduce Chinese research achievements in the discipline. It highlights the necessity and importance of international cooperation in the HEP community of the world.展开更多
In this paper, we present a new form of “special relativity” (BSR), which is isomorphic to Einstein’s “special relativity” (ESR). This in turn proves the non-uniqueness of Einstein’s “special relativity” and i...In this paper, we present a new form of “special relativity” (BSR), which is isomorphic to Einstein’s “special relativity” (ESR). This in turn proves the non-uniqueness of Einstein’s “special relativity” and implies the inconclusiveness of so-called “relativistic physics”. This work presents new results of principal significance for the foundations of physics and practical results for high energy physics, deep space astrophysics, and cosmology as well. The entire exposition is done within the formalism of the Lorentz <em>SL</em>(2<em>C</em>) group acting via isometries on <strong>real 3-dimensional Lobachevskian (hyperbolic) spaces</strong> <em>L</em><sup>3</sup> regarded as quotients <span style="white-space:nowrap;"><em>SL</em>(2<em>C</em>)/<em>SU</em>(2)</span>. We show via direct calculations that both ESR and BSR are parametric maps from Lobachevskian into Euclidean space, namely a <strong>gnomonic</strong> (central) map in the case of ESR, and a<strong> stereographic </strong>map in the case of BSR. Such an identification allows us to link these maps to relevant models of Lobachevskian geometry. Thus, we identify ESR as the physical realization of the Beltrami-Klein (non-conformal) model, and BSR as the physical realization of the Poincare (conformal) model of Lobachevskian geometry. Although we focus our discussion on ball models of Lobachevskian geometry, our method is quite general, and for instance, may be applied to the half-space model of Lobachevskian geometry with appropriate “Lorentz group” acting via isometries on (positive) half space, resulting yet in another “special relativity” isomorphic with ESR and BSR. By using the notion of a<strong> homotopy</strong> of maps, the identification of “special relativities” as maps from Lobachevskian into Euclidean space allows us to justify the existence of an uncountable infinity of hybrid “special relativities” and consequently an uncountable infinity of “relativistic physics” built upon them. This is another new result in physics and it states that so called “relativistic physics” is unique only up to a homotopy. Finally, we show that “paradoxes” of “special relativities” in either ESR or BSR are simply common distortions of maps between non-isometric spaces. The entire exposition is kept at elementary level accessible to majority of students in physics and/or engineering.展开更多
In order to assess the electrical energy storage technologies,the thermo-economy for both capacity-type and power-type energy storage are comprehensively investigated with consideration of political,environmental and ...In order to assess the electrical energy storage technologies,the thermo-economy for both capacity-type and power-type energy storage are comprehensively investigated with consideration of political,environmental and social influence.And for the first time,the Exergy Economy Benefit Ratio(EEBR)is proposed with thermo-economic model and applied to three different storage systems in various scenarios,including pumped storage,compressed air energy storage and flywheel energy storage.The impact of the total system efficiency,annual utilization hour,life time,and other key factors are also analyzed.The results show that the EEBRs of pumped storage and compressed air energy storage under peak load shaving condition and flywheel energy storage under frequency modulation service condition are all larger than zero,which means they are all thermo-economically feasible.With extra consideration of political,environmental and social impact,the exergy cost could reduce by about 25%and the EEBR doubles.The sensitivity analysis indicates the similarity and diversity of influence to EEBR between capacity-type and power-type energy storage systems.The former is that energy efficiency is the dominated factor for all three storage systems.The latter is that the difference of exergy benefit mode causes variety in other major factors.For energy-type storage system,like pumped storage and compressed air storage,the peak-to-valley price ratio is very sensitive in energy arbitrage.For power-type storage system,like flywheel storage,the mileage ratio is in leading position in auxiliary service benefit by mileage.In the three cases studied,the pumped storage has the best thermo-economy;the compressed air energy storage is the second,and the flywheel energy storage is the third.The main reason is that the pumped storage has the least non-exergy cost,and flywheel has the most.展开更多
Lead iodide single crystal was grown by physical vapor transport method.Two radiation detectors with different configurations were fabricated from the as-grown crystal.The electrical and y-ray response properties at r...Lead iodide single crystal was grown by physical vapor transport method.Two radiation detectors with different configurations were fabricated from the as-grown crystal.The electrical and y-ray response properties at room temperature of the both detectors were investigated.It is found that the dark resistivity of the detectors are respectively 3×10^(10)Ω·cm for bias electric field parallel to crystal c-axis(E//c) and 2×10~8Ω·cm for perpendicular to crystal c-axis(E⊥c).The energy spectrum response measurement shows that both detectors were sensitive to ^(241) Am 59.5 keVγ-rays,and achieved a good energy resolution of 16.8%for the E⊥c-axis configuration detector with a full width at half maximum of 9.996 keV.展开更多
Competition among the two-plasmon decay(TPD)of backscattered light of stimulated Raman scattering(SRS),filamentation of the electron-plasma wave(EPW)and forward side SRS is investigated by two-dimensional particlein-c...Competition among the two-plasmon decay(TPD)of backscattered light of stimulated Raman scattering(SRS),filamentation of the electron-plasma wave(EPW)and forward side SRS is investigated by two-dimensional particlein-cell simulations.Our previous work[K.Q.Pan et al.,Nucl.Fusion 58,096035(2018)]showed that in a plasma with the density near 1/10 of the critical density,the backscattered light would excite the TPD,which results in suppression of the backward SRS.However,this work further shows that when the laser intensity is so high(>10^(16)W/cm^(2))that the backward SRS cannot be totally suppressed,filamentation of the EPW and forward side SRS will be excited.Then the TPD of the backscattered light only occurs in the early stage and is suppressed in the latter stage.Electron distribution functions further show that trapped-particle-modulation instability should be responsible for filamentation of the EPW.This research can promote the understanding of hot-electron generation and SRS saturation in inertial confinement fusion experiments.展开更多
A new approach to realize high-energy and high-power stimulated Brillouin scattering phase conjugation mirrors (SBS-PCMs) is described.The reflectivity of SBS-PCM is investigated under a 10-Hz repetition rate and a ...A new approach to realize high-energy and high-power stimulated Brillouin scattering phase conjugation mirrors (SBS-PCMs) is described.The reflectivity of SBS-PCM is investigated under a 10-Hz repetition rate and a high energy load.The relationship between reflectivity and input energy is examined experimentally with different PCM structures,focus lengths,and medium cell structures.A medium cell with a circulating structure is designed,and its advantage is demonstrated through an experimental comparison with traditional PCM structures.The 30-cm focus lens and 150-cm collimation lens are optimized when the input energy reaches 1010 mJ at 10-Hz repetition rate.Therefore,a reflectivity of 84.7% and a higher energy load using the circulating two-cell structure are achieved.展开更多
文摘In this editorial,we discuss the remarkable role of physical energies in the control of cell signaling networks and in the specification of the architectural plan of both somatic and stem cells.In particular,we focus on the biological relevance of bioelectricity in the pattern control that orchestrates both developmental and regenerative pathways.To this end,the narrative starts from the dawn of the first studies on animal electricity,reconsidering the pioneer work of Harold Saxton Burr in the light of the current achievements.We finally discuss the most recent evidence showing that bioelectric signaling is an essential component of the informational processes that control pattern specification during embryogenesis,regeneration,or even malignant transformation.We conclude that there is now mounting evidence for the existence of a Morphogenetic Code,and that deciphering this code may lead to unprecedented opportunities for the development of novel paradigms of cure in regenerative and precision medicine.
基金supported by the Researchers Supporting Program(TUMA-Project-2021-27)Almaarefa University,Riyadh,Saudi ArabiaTaif University Researchers Supporting Project number(TURSP-2020/161),Taif University,Taif,Saudi Arabia。
文摘A cyber physical energy system(CPES)involves a combination of pro-cessing,network,and physical processes.The smart grid plays a vital role in the CPES model where information technology(IT)can be related to the physical system.At the same time,the machine learning(ML)modelsfind useful for the smart grids integrated into the CPES for effective decision making.Also,the smart grids using ML and deep learning(DL)models are anticipated to lessen the requirement of placing many power plants for electricity utilization.In this aspect,this study designs optimal multi-head attention based bidirectional long short term memory(OMHA-MBLSTM)technique for smart grid stability predic-tion in CPES.The proposed OMHA-MBLSTM technique involves three subpro-cesses such as pre-processing,prediction,and hyperparameter optimization.The OMHA-MBLSTM technique employs min-max normalization as a pre-proces-sing step.Besides,the MBLSTM model is applied for the prediction of stability level of the smart grids in CPES.At the same time,the moth swarm algorithm(MHA)is utilized for optimally modifying the hyperparameters involved in the MBLSTM model.To ensure the enhanced outcomes of the OMHA-MBLSTM technique,a series of simulations were carried out and the results are inspected under several aspects.The experimental results pointed out the better outcomes of the OMHA-MBLSTM technique over the recent models.
基金supported by the Science and Technology Project of State Grid Corporation of China(W22KJ2722005)Tianyou Innovation Team of Lanzhou Jiaotong University(TY202009).
文摘The virtual synchronous generator(VSG)can simulate synchronous machine’s operation mechanism in the control link of an energy storage converter,so that an electrochemical energy storage power station has the ability to actively support the power grid,from passive regulation to active support.Since energy storage is an important physical basis for realizing the inertia and damping characteristics in VSG control,energy storage constraints of the physical characteristics on the system control parameters are analyzed to provide a basis for the system parameter tuning.In a classic VSG control,its virtual inertia and damping coefficient remain unchanged.When the grid load changes greatly,the constant control strategy most likely result in the grid frequency deviation beyond the stable operation standard limitations.To solve this problem,a comprehensive control strategy considering electrified wire netting demand and energy storage unit state of charge(SOC)is proposed,and an adaptive optimization method of VSG parameters under different SOC is given.The energy storage battery can maintain a safe working state at any time and be smoothly disconnected,which can effectively improve the output frequency performance of energy storage system.Simulation results further demonstrated the effectiveness of the VSG control theoretical analysis.
文摘Recently,we read with interest the article entitled“Unveiling the Morphogenetic Code:A New Path at the Intersection of Physical Energies and Chemical Signaling”.In this paper,the investigation into the systematic and comprehensive bio-effects of physical energies prompted us to reflect on our research.We believe that ultrasound,which possesses a special physical energy,also has a certain positive regulatory effect on macrophages,and we have already obtained some preliminary research results that support our hypothesis.
基金This study was funded by the Deanship of Scientific Research,Taif University Researchers Supporting project number(TURSP-2020/195)Taif University,Taif,Saudi Arabia.The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/25/43)+1 种基金The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR02)The authors would like to acknowledge the support of Prince Sultan University for paying the Article Processing Charges(APC)of this publication.
文摘Recently,cyber physical system(CPS)has gained significant attention which mainly depends upon an effective collaboration with computation and physical components.The greatly interrelated and united characteristics of CPS resulting in the development of cyber physical energy systems(CPES).At the same time,the rising ubiquity of wireless sensor networks(WSN)in several application areas makes it a vital part of the design of CPES.Since security and energy efficiency are the major challenging issues in CPES,this study offers an energy aware secure cyber physical systems with clustered wireless sensor networks using metaheuristic algorithms(EASCPSMA).The presented EASCPS-MA technique intends to attain lower energy utilization via clustering and security using intrusion detection.The EASCPSMA technique encompasses two main stages namely improved fruit fly optimization algorithm(IFFOA)based clustering and optimal deep stacked autoencoder(OSAE)based intrusion detection.Besides,the optimal selection of stacked autoencoder(SAE)parameters takes place using root mean square propagation(RMSProp)model.The extensive performance validation of the EASCPS-MA technique takes place and the results are inspected under varying aspects.The simulation results reported the improved effectiveness of the EASCPS-MA technique over other recent approaches interms of several measures.
基金supported by Danone Fund for Dietary Nutrition Research and Education[DIC2021-03].
文摘Objective To determine the thermic effect of food(TEF)in a Chinese mixed diet in young people.Methods During the study,the participants were weighed and examined for body composition every morning.The total energy expenditure(TEE)of the participants was measured by the doubly labeled water method for 7 days,and during this period,basal energy expenditure was measured by indirect calorimetry and physical activity energy expenditure was measured by an accelerometer.The value obtained by subtracting basal energy expenditure and physical activity energy expenditure from TEE was used to calculate TEF.Results Twenty healthy young students(18–30 years;10 male)participated in the study.The energy intake of the participants was not significantly different from the Chinese Dietary Reference Intake of energy(P>0.05).The percentage of energy from protein,fat and carbohydrate were all in the normal range.The intakes of fruits,milk and dietary fiber of the participants were significantly lower than those in the Chinese Dietary Guidelines(P<0.05).There was no significant difference in the body weight of the participants during the experiment(P>0.05).When adjusted for body weight,there was no significant difference in either TEE or basal energy expenditure between the male and female participants(P>0.05).In addition,there was no significant difference in physical activity energy expenditure and TEF between the male and female participants(P>0.05).The percentage of TEF in TEE was 8.73%.Conclusion The percentage of TEF in TEE in a Chinese mixed diet in young people was significantly lower than 10%(P<0.001).A value of 10%is usually considered to be the TEF in mixed diets as a percentage of TEE.
基金supported by Visiting Scholar Foundation of Key LaboratoryMinistry of Education,China and Initiative Foundation of Scaence and Technology,Beijing
文摘This paper reports the high-energy proton irradiation effects on GaAs/Ge space solar cells. The solar cells were irradiated by protons with energy of 5-20 MeV at fluence ranging from 1×109 to 7×1013 cm-2, and then their electric parameters were measured at AM0. It was shown that the Isc, Voc and Pmax decrease as the proton energy increasing, and the degradation is relative to proton irradiation-induced defect with a level of Ec-0.41 eV in irradiated GaAs/Ge cells.
文摘Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.Around the beginning of this century,China Academy of Engineering Physics(CAEP)began to build some experimental facilities for HEDP investigations,among which the Primary Test Stand(PTS),a multi-module pulsed power facility with a nominal current of 10 MA and a current rising time~90 ns,is an important achievement on the roadmap of the electro-magnetically driven inertial confinement fusion(ICF)researches.PTS is the first pulsed power facility beyond 10 TW in China.Therefore,all the technologies have to be demonstrated,and all the engineering issues have to be overcome.In this article,the research outline,key technologies and the preliminary HEDP experiments are reviewed.Prospects on HEDP research on PTS and pulsed power development for the next step are also discussed.
文摘We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver(LTD)architecture described by Stygar[W.A.Stygar et al.,Phys.Rev.ST Accel.Beams 18,110401(2015)].The driver will allow multiple,high-energy-density experiments per day in a university environment and,at the same time,will enable both fundamental and integrated experiments that are scalable to larger facilities.In this design,many individual energy storage units(bricks),each composed of two capacitors and one switch,directly drive the target load without additional pulse compression.Ten LTD modules in parallel drive the load.Each module consists of 16 LTD cavities connected in series,where each cavity is powered by 22 bricks connected in parallel.This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance,water-insulated radial transmission lines.The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load.To maximize its experimental value and flexibility,the accelerator is coupled to a modern,multibeam laser facility(four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less)that can provide auxiliary heating of the physics load.The lasers also enable advanced diagnostic techniques such as X-ray Thomson scattering and multiframe and three-dimensional radiography.The coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-densityephysics experiments.
基金support of the German BMBF is acknowledged for many supporting grants for PRIOR,cryo-target development,beam diagnostics and material properties researchthe support of DFGRFBR(German Science Foundation-Russian Foundation of Basic Research)+1 种基金the Russian grant of Scientific school НШ-5814.2014.2 is acknowledgedgrateful for funding from National Natural Science Foundation of China NSFC grants Nos.:U1532263,11505248,11375034,11205225,11275241,and 11275238.
文摘We review the development of High Energy Density Physics(HEDP)with intense heavy ion beams as a tool to induce extreme states of matter.The development of this field connects intimately to the advances in accelerator physics and technology.We will cover the generation of intense heavy ion beams starting from the ion source and follow the acceleration process and transport to the target.Intensity limitations and potential solutions to overcome these limitations are discussed.This is exemplified by citing examples from existing machines at the Gesellschaft fur Schwerionenforschung(GSI-Darmstadt),the Institute of Theoretical and Experimental Physics in Moscow(ITEP-Moscow),and the Institute of Modern Physics(IMP-Lanzhou).Facilities under construction like the FAIR facility in Darmstadt and the High Intensity Accelerator Facility(HIAF),proposed for China will be included.Developments elsewhere are covered where it seems appropriate along with a report of recent results and achievements.
基金supported in part by the Youth Innovation Promotion Association CAS(2018186)the National Science Foundation of China(NSFC)under Grant No.11775207。
文摘The work of Chinese scientists conducted at the Joint Institute for Nuclear Research(JINR)(1956–1965)was inextricably linked to the Sino-Soviet relations in the 1950 s–1960 s.During the early stage of the JINR,with the aid of advanced equipment and the international cooperation mechanism,Chinese scientists yielded significant results,such as the discovery of the antisigma-minus hyperon and the proof of the law of partial conservation of axial current(PCAC).After the Sino-Soviet split,Chinese scientists’activities at the institute were hampered by political tensions,eventually resulting in China’s withdrawal from the JINR in 1965.But through the involvement at the JINR,Chinese scientists were trained in scientific practices and participated in international exchange and cooperation which turned them into a new force in China’s nuclear industry,boosting its nuclear weapons,particle physics theory,and accelerator technology.In the meantime,the scientists’activities extended the international influence of the JINR.The withdrawal of China from the institute impacted both the JINR and the development of science in China.
文摘Objective:To infer the training load from the characteristics of heart rate changes of elite sprinters during maximum intensity training.Methods:Different training loads were determined according to different running distances.Multi-person running in the same group was used to collect the heart rate data of elite sprinters during speed training.Results:the heart rate level was directly related to the exercise load.During the maximum intensity exercise,the heart rate generally increased for about 12 s after the race,which was about 110%of the end-point heart rate.Compared with the low load group(60m),the heart rate of the high load group(100m)continued to rise,but the maximum heart rate level was higher than that of the low load group.The exercise intensity and heart rate change rate of the low load group are greater,the work done by the high load group is more,and the envelope area of the heart rate curve is larger.During intermittent training,under the condition of controlling the interval between groups,the heart rate curve envelope area of the low load group is small,the physical recovery is good,the parameter consistency of each group is good,the heart rate curve envelope area of the high load group is large,and the heart rate response decreases gradually.
文摘A cosmological model for the very early universe is proposed which may modify the present point of view of physicists and astrophysicists, concerning the very early universe at a miniscule fraction of a second, approximately 10<sup>-60</sup> seconds after the Big Bang. The model proposes the presence of a primordial s-particle that, following the Big Bang, was violently ejected in all spatial directions together with extremely high-frequency radiation that dominates this era. The proposed s-particles underwent two geometrical phase transitions in space-time that led to the formation of the known fundamental particles (i.e., dark matter, quarks, electrons, neutrinos, etc.). Furthermore, in the model, the four fundamental forces may be accommodated within one structural framework. It shows that the electronic charge is not a fundamental quantity (intrinsic property of the particle), but rather that it can be derived from the tangential velocity of the s-particle. Moreover, it appears that the masses of the fundamental particles are proportional to the curvature of the path of the s-particle.
文摘The 27th Meeting of the Sino-U.S. Joint Committee on High Energy Physics took place on 17 and 18 November at the CAS Institute of High Energy Physics
文摘This article first presents an overview of the Internationa] Symposium on Lepton-Photon Interactions (LP’95) and briefly introduce Chinese research achievements in the discipline. It highlights the necessity and importance of international cooperation in the HEP community of the world.
文摘In this paper, we present a new form of “special relativity” (BSR), which is isomorphic to Einstein’s “special relativity” (ESR). This in turn proves the non-uniqueness of Einstein’s “special relativity” and implies the inconclusiveness of so-called “relativistic physics”. This work presents new results of principal significance for the foundations of physics and practical results for high energy physics, deep space astrophysics, and cosmology as well. The entire exposition is done within the formalism of the Lorentz <em>SL</em>(2<em>C</em>) group acting via isometries on <strong>real 3-dimensional Lobachevskian (hyperbolic) spaces</strong> <em>L</em><sup>3</sup> regarded as quotients <span style="white-space:nowrap;"><em>SL</em>(2<em>C</em>)/<em>SU</em>(2)</span>. We show via direct calculations that both ESR and BSR are parametric maps from Lobachevskian into Euclidean space, namely a <strong>gnomonic</strong> (central) map in the case of ESR, and a<strong> stereographic </strong>map in the case of BSR. Such an identification allows us to link these maps to relevant models of Lobachevskian geometry. Thus, we identify ESR as the physical realization of the Beltrami-Klein (non-conformal) model, and BSR as the physical realization of the Poincare (conformal) model of Lobachevskian geometry. Although we focus our discussion on ball models of Lobachevskian geometry, our method is quite general, and for instance, may be applied to the half-space model of Lobachevskian geometry with appropriate “Lorentz group” acting via isometries on (positive) half space, resulting yet in another “special relativity” isomorphic with ESR and BSR. By using the notion of a<strong> homotopy</strong> of maps, the identification of “special relativities” as maps from Lobachevskian into Euclidean space allows us to justify the existence of an uncountable infinity of hybrid “special relativities” and consequently an uncountable infinity of “relativistic physics” built upon them. This is another new result in physics and it states that so called “relativistic physics” is unique only up to a homotopy. Finally, we show that “paradoxes” of “special relativities” in either ESR or BSR are simply common distortions of maps between non-isometric spaces. The entire exposition is kept at elementary level accessible to majority of students in physics and/or engineering.
基金funded by National Key R&D Plan(2017YFB0903605)National Natural Science Foundation of China(51606185)+2 种基金International Partnership Program,Bureau of International Cooperation of Chinese Academy of Sciences(182211KYSB20170029)Science and Technology Plan Program of Guizhou Province([2017]1163)Beijing Key Laboratory of Distributed Combined Cooling Heating and Power System.
文摘In order to assess the electrical energy storage technologies,the thermo-economy for both capacity-type and power-type energy storage are comprehensively investigated with consideration of political,environmental and social influence.And for the first time,the Exergy Economy Benefit Ratio(EEBR)is proposed with thermo-economic model and applied to three different storage systems in various scenarios,including pumped storage,compressed air energy storage and flywheel energy storage.The impact of the total system efficiency,annual utilization hour,life time,and other key factors are also analyzed.The results show that the EEBRs of pumped storage and compressed air energy storage under peak load shaving condition and flywheel energy storage under frequency modulation service condition are all larger than zero,which means they are all thermo-economically feasible.With extra consideration of political,environmental and social impact,the exergy cost could reduce by about 25%and the EEBR doubles.The sensitivity analysis indicates the similarity and diversity of influence to EEBR between capacity-type and power-type energy storage systems.The former is that energy efficiency is the dominated factor for all three storage systems.The latter is that the difference of exergy benefit mode causes variety in other major factors.For energy-type storage system,like pumped storage and compressed air storage,the peak-to-valley price ratio is very sensitive in energy arbitrage.For power-type storage system,like flywheel storage,the mileage ratio is in leading position in auxiliary service benefit by mileage.In the three cases studied,the pumped storage has the best thermo-economy;the compressed air energy storage is the second,and the flywheel energy storage is the third.The main reason is that the pumped storage has the least non-exergy cost,and flywheel has the most.
基金Project supported by the National Natural Science Foundation of China(No.50902012)the Natural Science Foundation of Sichuan Province,China(No.2009JY0087)
文摘Lead iodide single crystal was grown by physical vapor transport method.Two radiation detectors with different configurations were fabricated from the as-grown crystal.The electrical and y-ray response properties at room temperature of the both detectors were investigated.It is found that the dark resistivity of the detectors are respectively 3×10^(10)Ω·cm for bias electric field parallel to crystal c-axis(E//c) and 2×10~8Ω·cm for perpendicular to crystal c-axis(E⊥c).The energy spectrum response measurement shows that both detectors were sensitive to ^(241) Am 59.5 keVγ-rays,and achieved a good energy resolution of 16.8%for the E⊥c-axis configuration detector with a full width at half maximum of 9.996 keV.
基金supported by the National Natural Science Foundation of China(Nos.12205274,12275251,12035002,11975215)
文摘Competition among the two-plasmon decay(TPD)of backscattered light of stimulated Raman scattering(SRS),filamentation of the electron-plasma wave(EPW)and forward side SRS is investigated by two-dimensional particlein-cell simulations.Our previous work[K.Q.Pan et al.,Nucl.Fusion 58,096035(2018)]showed that in a plasma with the density near 1/10 of the critical density,the backscattered light would excite the TPD,which results in suppression of the backward SRS.However,this work further shows that when the laser intensity is so high(>10^(16)W/cm^(2))that the backward SRS cannot be totally suppressed,filamentation of the EPW and forward side SRS will be excited.Then the TPD of the backscattered light only occurs in the early stage and is suppressed in the latter stage.Electron distribution functions further show that trapped-particle-modulation instability should be responsible for filamentation of the EPW.This research can promote the understanding of hot-electron generation and SRS saturation in inertial confinement fusion experiments.
基金supported by the National Natural Science Foundation of China(No. 60878005)the China Postdoctoral Science Foundation(No. 20090450966)+1 种基金the Heilongjiang Postdoctoral Science Foundationthe Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(No. HIT. NSRIF.2009010)
文摘A new approach to realize high-energy and high-power stimulated Brillouin scattering phase conjugation mirrors (SBS-PCMs) is described.The reflectivity of SBS-PCM is investigated under a 10-Hz repetition rate and a high energy load.The relationship between reflectivity and input energy is examined experimentally with different PCM structures,focus lengths,and medium cell structures.A medium cell with a circulating structure is designed,and its advantage is demonstrated through an experimental comparison with traditional PCM structures.The 30-cm focus lens and 150-cm collimation lens are optimized when the input energy reaches 1010 mJ at 10-Hz repetition rate.Therefore,a reflectivity of 84.7% and a higher energy load using the circulating two-cell structure are achieved.