期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Physical model test and numerical simulation on the failure mechanism of the roadway in layered soft rocks 被引量:10
1
作者 Xiaoming Sun Chengwei Zhao +3 位作者 Yong Zhang Feng Chen Shangkun Zhang Kaiyuan Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期291-302,共12页
To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employ... To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks. 展开更多
关键词 Failure mechanism physical model test 3DEC Layered soft rocks Large deformation
下载PDF
Rainfall-triggered waste dump instability analysis based on surface 3D deformation in physical model test
2
作者 LI Hanlin JIN Xiaoguang +2 位作者 HE Jie XUE Yunchuan YANG Zhongping 《Journal of Mountain Science》 SCIE 2024年第5期1549-1563,共15页
Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the ra... Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability. 展开更多
关键词 Waste dump stability physical model test Surface 3D deformation Stability identification
下载PDF
Physical model test on the support characteristic for quasi-NPR bolt under asymmetric stress
3
作者 Wei Ming Xiaojie Yang +3 位作者 Yadong Mao Xiang Wang Manchao He Zhigang Tao 《Underground Space》 SCIE EI CSCD 2023年第4期46-62,共17页
With the continuous increase in tunnel construction,the significant deformation of the surrounding tunnel rock is often difficult to predict and control.In addition,the lithology,structure,and various asymmetric large... With the continuous increase in tunnel construction,the significant deformation of the surrounding tunnel rock is often difficult to predict and control.In addition,the lithology,structure,and various asymmetric large deformation of surrounding rock mass during operation and maintenance severely affect the ultimate bearing and stability of the tunnel.To explore the deformation mechanisms and failure modes of surrounding rock under large asymmetric stress and complex geological conditions,a physical model of a tunnel through granite was constructed based on the similarity theory.The model had 30°dip lithology under asymmetric stress and was emplaced a new quasi-negative Poisson’s ratio(NPR)bolt.By analyzing the variation law of displacement and axial force of the bolt under an asymmetric load,the asymmetric deformation and failure mechanism of the granite tunnel and the support effect of the quasi-NPR bolt were determined.The energy absorbed by the surrounding rock was analyzed,and the influence mechanism and control countermeasures of asymmetric stress on the granite tunnel were explored.This work provides a reference for the design of asymmetric support of tunnels with similar engineering backgrounds. 展开更多
关键词 Asymmetric stress physical model test Quasi-NPR bolt Support characteristic
原文传递
Physical model investigation on effects of drainage condition and cement addition on consolidation behavior of tailings slurry within backfilled stopes
4
作者 Qinghai Ma Guangsheng Liu +1 位作者 Xiaocong Yang Lijie Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1490-1501,共12页
Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requi... Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requires a good understanding of self-weight consolidation behaviors of the tailings slurry within practical stopes,where many factors can have significant effects on the consolidation,including drainage condition and cement addition.In this paper,the prepared tailings slurry with different cement contents(0,4.76wt%,and 6.25wt%)was poured into1.2 m-high columns,which allowed three drainage scenarios(undrained,partial lateral drainage near the bottom part,and full lateral drainage boundaries)to investigate the effects of drainage condition and cement addition on the consolidation behavior of the tailings slurry.The consolidation behavior was analyzed in terms of pore water pressure(PWP),settlement,volume of drainage water,and residual water content.The results indicate that increasing the length of the drainage boundary or cement content aids in PWP dissipation.In addition,constructing an efficient drainage boundary was more favorable to PWP dissipation than increasing cement addition.The final stable PWP on the column floor was not sensitive to cement addition.The final settlement of uncemented tailings slurry was independent of drainage conditions,and that of cemented tailings slurry decreased with the increase in cement addition.Notably,more pore water can drain out from the cemented tailings slurry than the uncemented tailings slurry during consolidation. 展开更多
关键词 tailings backfill CONSOLIDATION slurry drainage cement content physical model test
下载PDF
Hydrodynamic Performance of a Newly-Designed Pelagic and Demersal Trawls Using Physical Modeling and Analytical Methods for Cameroonian Industrial Fisheries
5
作者 Tcham Leopold Vanlie Maurice Kontchou +2 位作者 Nyatchouba Nsangue Bruno Thierry Abdou Njifenjou Njomoue Pandong Achille 《Open Journal of Marine Science》 2023年第3期41-65,共25页
This study proposed the newly-designed Pelagic and demersal trawls for the fishing vessels operating in Cameroonian waters in pelagic and demersal fishing grounds. The engineering performances of both trawls were inve... This study proposed the newly-designed Pelagic and demersal trawls for the fishing vessels operating in Cameroonian waters in pelagic and demersal fishing grounds. The engineering performances of both trawls were investigated using physical modelling method and analytical method based on the predicted equations. In a flume tank, a series of physical model tests based on Tauti’s law were performed to investigate the hydrodynamic and geometrical performances of both trawls and to assess the applicability of the analytical methods based on predicted equations. The results showed that in model scale, the working towing speed and door spread for the pelagic trawl were 3.5 knots and 1.85 m, respectively, and for the bottom trawl net they were 4.0 knots and 1.8 m. At that speed and door spread, the drag force, net opening height, and wing-end spread of the pelagic model trawl were 36.73 N, 0.89 m, and 0.86 m, respectively, and the swept area was 0.76 m<sup>2</sup>. Bottom trawl speed and door spread were 30.43 N, 0.38 m, and 0.45 m, respectively, and the swept area was 0.25 m<sup>2</sup>. The maximum difference between the experimental and analytical results of hydrodynamic performances was less than 56.22% and 41.45%, respectively, for pelagic and bottom trawls, the results of the geometrical performances obtained using predicted equations were close to the experimental results in the flume tank with a maximum relative error less than 12.85%. The newly developed pelagic and bottom trawls had advanced engineering performance for high catch efficiency and selectivity and could be used in commercial fishing operations in Cameroonian waters. 展开更多
关键词 Cameroonian Waters Pelagic Trawl Bottom Trawl Engineering Performances physical model test Analytical Methods Formatting
下载PDF
Model test of the influence of cyclic water level fluctuations on a landslide 被引量:4
6
作者 HE Chun-can HU Xin-li +3 位作者 XU Chu WU Shuang-shuang ZHANG Han LIU Chang 《Journal of Mountain Science》 SCIE CSCD 2020年第1期191-202,共12页
Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorge... Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorges Reservoir area, is used to study the effect of cyclic water level fluctuations on the landslide. Five cyclic water level fluctuations were implemented in the test, and the fluctuation rate in the last two fluctuations doubled over the first three fluctuations. The pore water pressure and lateral landslide profiles were obtained during the test. A measurement of the landslide soil loss was proposed to quantitatively evaluate the influence of water level fluctuations. The test results show that the first water level rising is most negative to the landslide among the five cycles. The fourth drawdown with a higher drawdown rate caused further large landslide deformation. An increase of the water level drawdown rate is much more unfavorable to the landslide than an increase of the water level rising rate. In addition, the landslide was found to have an adaptive ability to resist subsequent water level fluctuations after undergoing large deformation during a water level fluctuation. The landslide deformation and observations in the field were found to support the test results well. 展开更多
关键词 Reservoir landslide Cyclic water level fluctuations physical model test Landslide soil loss Adaptive ability
下载PDF
Strength and deformation characteristics of irregular columnar jointed rock mass: A combined experimental and theoretical study
7
作者 Xiangcheng Que Zhende Zhu +2 位作者 Yanxin He Zihao Niu Haonan Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期429-441,共13页
The irregularity of jointed network poses a challenge to the determination of field mechanical param-eters of columnar jointed rock mass(CJRM),and a reasonable prediction of deformation and strength characteristics of... The irregularity of jointed network poses a challenge to the determination of field mechanical param-eters of columnar jointed rock mass(CJRM),and a reasonable prediction of deformation and strength characteristics of CJRM is important for engineering construction.The Voronoi diagram and three-dimensional printing technology were used to make an irregular columnar jointed mold,and the irregular CJRM(ICJRM)specimens with different dip directions and dip angles were prepared.Uniaxial compression tests were performed,and the anisotropic strength and deformation characteristics of ICJRM were described.The failure modes and mechanisms were revealed in accordance with the final appearances of the ICJRM specimens.Based on the model test results,the empirical correlations for determining the field deformation and strength parameters of CJRM were derived using the dip angle and modified joint factor.The proposed empirical equations were used in the Baihetan Project,and the calculated mechanical parameters were compared with the field test results and those obtained from the tunneling quality index method.Results showed that the deformation parameters determined by the two proposed methods are all consistent with the field test results,and these two methods can also estimate the strength parameters effectively. 展开更多
关键词 Irregular columnar jointed rock mass (ICJRM) physical model test Anisotropic characteristic Empirical relations Dip angle Modified joint factor
下载PDF
Failure mechanism of a large-scale composite deposits caused by the water level increases
8
作者 ZHANG Xin TU Guo-xiang +3 位作者 LUO Qi-feng TANG Hao ZHANG Yu-lin LI An-run 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1369-1384,共16页
The failure of slope caused by variations in water levels on both banks of reservoirs is common.Reservoir landslides greatly threaten the safety of reservoir area.Taking large-scale composite deposits located on the L... The failure of slope caused by variations in water levels on both banks of reservoirs is common.Reservoir landslides greatly threaten the safety of reservoir area.Taking large-scale composite deposits located on the Lancang River in Southwest China as a study case,the origin of the deposits was analyzed based on the field investigation and a multi-material model was established in the physical model test.Combined with numerical simulation,the failure mechanism of the composite deposits during reservoir water level variations was studied.The results indicate that the deformation of the large-scale composite deposits is a staged sliding mode during the impoundment process.The first slip deformation is greatly affected by the buoyancy weight-reducing effect,and the permeability of soil and variation in the water level are the factors controlling slope deformation initiation.The high water sensitivity and low permeability of fine grained soil play an important role in the re-deformation of deposits slope.During the impoundment process,the deformation trend of the deposit slope is decreasing,and vertical consolidation of soil and increasing hydrostatic pressure on the slope surface are the main reasons for deformation attenuation.It is considered that the probability of large-scale sliding of the deposits during the impoundment period is low.But the damage caused by local bank collapse of the deposit slope still needs attention.The results of this paper will further improve our understanding of the failure mechanism of composite deposits caused by water level increases and provide guidance for the construction of hydropower stations. 展开更多
关键词 Composite deposits Reservoir water level rise physical model test Finite-differencemethod Failure mechanism
下载PDF
Model test and numerical simulation of a new prefabricated double-row piles retaining system in silty clay ground
9
作者 Ruisong Wang Hao Yang +6 位作者 Pengpeng Ni Chenyang Zhao Chengchao Guo Huihuan Ma Pu Dong Huqing Liang Mengxiong Tang 《Underground Space》 SCIE EI CSCD 2023年第6期262-280,共19页
This paper introduces a new prefabricated recyclable double-row piles retaining system for excavations in silty clay ground.Laboratory model test and numerical simulation are conducted to study the system behavior upo... This paper introduces a new prefabricated recyclable double-row piles retaining system for excavations in silty clay ground.Laboratory model test and numerical simulation are conducted to study the system behavior upon excavation.The horizontal displacement(δ_(h)),Von Mises stress(δ_(M)),strain(ε),ground surface settlement(δ_(v)),and earth pressure are systematically investigated.Furthermore,the monitoring data of 13 excavation cases supported by double-row piles retaining system are presented and discussed.The experimental results can basically match the numerical results,and the maximumδ_(M),maximum bending moment(M_(max)),maximum horizontal displacement(δ_(hm))of structural members are all less than the tolerance limits.The ground surface settlement model of double-row piles retaining system consists of three zones,i.e.,rebound influence zone,primary influence zone and secondary influence zone.The dhm values are 0.07%–1.42%of the excavation depth(He).The maximum ground surface settlement(δ_(vm))is generally less than dhm.The ratio ofδ_(vm)=δ_(hm)varies between 0.09 and 0.76,with an average value of 0.5.The observed earth pressure on the retained side of front pile(paf)is about 0.53–0.57γH below the excavation surface.Above the excavation surface,p_(af)decreases dramatically when getting closer to the ground surface. 展开更多
关键词 Prefabricated recyclable structure Double-row piles retaining system physical model test Numerical simulation DEFORMATION
原文传递
Experimental Study on Scouring and Silting Deformation of Artificial Beach Under Storm Surge−Wave Coupling
10
作者 SUN Tian-ting HU Po +3 位作者 PAN Jun-ning HOU Yi-jun MO Dong-xue WANG Deng-ting 《China Ocean Engineering》 SCIE EI CSCD 2022年第1期65-75,共11页
With the increasing construction of artificial beach in coastal areas, it is of practical significance to study the beach surface deformation of artificial beach profile. Previous studies only focus on a single wave d... With the increasing construction of artificial beach in coastal areas, it is of practical significance to study the beach surface deformation of artificial beach profile. Previous studies only focus on a single wave dynamic factor, and it is difficult to predict the beach deformation of artificial beach profile under the storm surge-wave co-action. To solve this problem, the cross-section physical model test method was used to study the beach surface deformation of a typical artificial beach profile in Shuangdao Bay, Weihai, Shandong Province, after continuous wave actions till they stabilize. The characteristics of beach surface deformation under the conditions of constant water levels, laddershaped water level combined with corresponding wave elements and storm surge-wave co-action are compared and analyzed. A beach profile model which satisfies the theory of Bruun model is proposed. The test results show that the maximum scour depth of beach under storm surge-wave co-action is smaller and the scour range is obviously larger than that under the condition of constant water levels or ladder-shaped water level. The evaluation of the maximum scour depth by traditional model test tends to be conservative while the evaluation of the scour range is insufficient.The research results can provide scientific reference for designing artificial beaches. 展开更多
关键词 artificial beach scouring and silting deformation profile shape physical model tests storm surge-wave coupling
下载PDF
Analytical and Experimental Studies on Wave Scattering by a Horizontal Perforated Plate at the Still Water Level
11
作者 HE Shuyue ZHAO Yang +1 位作者 LIU Yong LI Huajun 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第6期1428-1440,共13页
This research investigates water-wave scattering via a horizontal perforated plate fixed at the still water level through analytical studies and physical model tests.The velocity potential decomposition method is comb... This research investigates water-wave scattering via a horizontal perforated plate fixed at the still water level through analytical studies and physical model tests.The velocity potential decomposition method is combined with an efficient iterative algorithm to develop an analytical solution in which the quadratic pressure drop condition is imposed on the horizontal perforated plate.The analytical results are in good agreement with the results of an independently developed iterative boundary element method(BEM)solution.Experimental tests are carried out in a wave flume to measure the reflection coefficient and transmission coefficient of the horizontal perforated plate,and the analytical results agree reasonably well with the experimental data.The influence of various structural parameters of the horizontal perforated plate on the hydrodynamic parameters of reflection coefficient,transmission coefficient,energy-loss coefficient,and wave force are analyzed on the basis of the analytical solution.Useful results for the practical engineering application of horizontal perforated plates are also presented. 展开更多
关键词 horizontal perforated plate still water level analytical solution quadratic pressure drop condition physical model test
下载PDF
Crack mechanism of ground fissures in loess layer of Fenwei Basin, China
12
作者 LI Cong LU Quanzhong +2 位作者 WANG Feiyong LUO Wenchao XU Qiang 《Journal of Mountain Science》 SCIE 2024年第5期1683-1696,共14页
The Fenwei Basin, covered by loess, experiences severe ground fissure disasters. These disasters disrupt the continuity of the loess and pose significant threats to engineering construction safety along transportation... The Fenwei Basin, covered by loess, experiences severe ground fissure disasters. These disasters disrupt the continuity of the loess and pose significant threats to engineering construction safety along transportation routes. Nevertheless, the crack characteristics and the influence zone of ground fissures in the loess layer remain inadequately investigated. To effectively prevent and control ground fissure disasters, physical model tests and the PFC(particle flow code) numerical simulation method are used to investigate the crack mechanism of buried ground fissures in the loess layer. The results show that there are two main cracks in the layer profile, which have a Y-shape morphology. As the dip angle of the preset cracks increased from 60° to 90°, the main deformation zone at the surface gradually shifted towards the footwall. The process of crack propagation from depth to surface is divided into five stages. Additionally, the results confirm the accuracy of the width of the rupture zone d2in the footwall calculated by the cantilever beam theory. These findings can offer theoretical guidance for determining the avoidance distance of ground fissures in loess regions, as well as for implementing disaster prevention and corresponding control measures for various stages of buried ground fissure propagation. 展开更多
关键词 Ground fissure Fenwei Basin physical model test Particle flow code Crack propagation
下载PDF
An experimental evaluation of pile-anchor strengthening mechanics for existing tunnels in landslide region
13
作者 Zhiguo Zhang Lei Fang +3 位作者 Qihua Zhao Mengxi Zhang Yutao Pan Bingbing Ma 《Underground Space》 SCIE EI 2022年第2期199-218,共20页
The landslides have an important influence on the force and deformation of existing tunnels,which may adversely affect the liner structures and even endanger normal operation.Current scholars have made few efforts to ... The landslides have an important influence on the force and deformation of existing tunnels,which may adversely affect the liner structures and even endanger normal operation.Current scholars have made few efforts to investigate the reinforcement measures for existing tunnels in the landslide region,and even paid less attention to probe into the pile-anchor strengthening mechanics.A new kind of pile-anchor strengthening system for existing tunnels has been proposed in this paper considering the influences of deforming land-slides,in which the anti-slide pile,the anchor cable and the tunnel lining were integrated as one force whole.In order to observe the pile-anchor strengthening mechanics,three physical model tests for comparative analyses were established in case of the tunnel axis parallel to the sliding direction of landslide,including the conditions without reinforcements,only with anti-slide pile and full with the pile-anchor strengthening system.Specially for the pile-anchor strengthening model tests,the extra experimental evaluation for the interaction mechanics between existing tunnel and landslide was added,such as,the tunnel diameter of 40 and 50 mm and the pile-anchor of three and six pairs.In addition,three-dimensional numerical models were implemented to analyze the landslide deformation and the internal force of tunnels after installing the pile-anchor strengthening system.Comparing with non-reinforcement,the bending moment of tunnel and contact stress at interface between tunnel and landslide at the position of 200 m away from tunnel entrance with six pairs pile-anchor reinforcement dropped by 97.2% and 50%.The results show that the deformation of landslide,the bending moment of existing tunnel and the contact stress at the interface between tunnel and landslide pronouncedly diminish after taking the pile-anchor strengthening measures.The new combined pile-anchor system has higher bearing capacity and stability,which can further improve the operation safety of existing tunnels in landslide region. 展开更多
关键词 Tunnel-landslide interaction Anchor cable Pile-anchor strengthening mechanics physical model test
原文传递
Ultimate bearing capacity of strip footing resting on clay soil mixed with tire-derived aggregates
14
作者 Ali AREFNIA Ali DEHGHANBANADAKI Khairul Anuar KASSIM 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第4期1016-1024,共9页
This study investigated the use of recycled tire-derived aggregate(TDA)mixed with kaolin as a method of increasing the ultimate bearing capacity(UBC)of a strip footing.Thirteen 1g physical modeling tests were prepared... This study investigated the use of recycled tire-derived aggregate(TDA)mixed with kaolin as a method of increasing the ultimate bearing capacity(UBC)of a strip footing.Thirteen 1g physical modeling tests were prepared in a rigid box of 0.6 m×0.9 m in plan and 0.6 m in height.During sample preparation,0%,20%,40%,or 60%(by weight)of powdery,shredded,small-sized granular(G 1–4 mm)or large-sized granular(G 5–8 mm)TDA was mixed with the kaolin.A strip footing was then placed on the stabilized kaolin and was caused to fail under stress-controlled conditions to determine the UBC.A rigorous 3D finite element analysis was developed in Optum G-3 to determine the UBC values based on the experimental test results.The experimental results showed that,except for the 20%powdery TDA,the TDA showed an increase in the UBC of the strip footing.When kaolin mixed with 20%G(5–8 mm),the UBC showed a threefold increase over that for the unreinforced case.The test with 20%G(1–4 mm)recorded the highest subgrade modulus.It was observed that the UBC calculated using finite element modeling overestimated the experimental UBC by an average of 9%. 展开更多
关键词 KAOLIN physical modeling tests STABILIZATION numerical modeling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部