We report a facile solution method to form titanium oxide(TiO_(2))nano-flower structure on the titanium(Ti)substrates for realizing good physical sterilization and biocompatibility.We first prepare TiO_(2) nanotubes(N...We report a facile solution method to form titanium oxide(TiO_(2))nano-flower structure on the titanium(Ti)substrates for realizing good physical sterilization and biocompatibility.We first prepare TiO_(2) nanotubes(NT)with a diameter of about 80-100 nm and a length of about 5μm on Ti substrates by anodization,which is utilized as precursor.Then,we employ immersion treatment in different concentrations of phosphoric acid solution at 75℃ for 5 h to realize the transformation from TiO_(2) NT to TiO_(2) nano-flower structure.In addition,we studied the effects of phosphoric acid concentration(1 wt%,2.5 wt%,5 wt% and 10 wt%)on the TiO_(2) nano-flower structure,and the antibacterial properties and biocompatibility of the TiO_(2) nano-flower structure.The results show that TiO_(2) nano-flower structure become larger and thicker with the increase in the phosphoric acid concentration,and the thickness of the coating can reach 6.88μm.Meanwhile,the TiO_(2) nano-flower structure shows good physical sterilization effect,especially for the TiO_(2) nano-flower structure formed in 10 wt%H^(3)PO_(4) solution,the antibacterial rate can reach 95%.In addition,the TiO_(2) nano-flower structure have no toxicity to the osteoblasts and support cell growth.展开更多
基金jointly supported by the Four“Batches”Innovation Project of Invigorating Medical through Science and Technology of Shanxi Province(2022XM12)the Central Leading Science and Technology Development Foundation of Shanxi Province(YDZJSX2021A019)+1 种基金the Key Research and Development Program of Shanxi Province(202102130501007)the Natural Science Foundation of Shanxi Province(202103021223102,202203021222127).
文摘We report a facile solution method to form titanium oxide(TiO_(2))nano-flower structure on the titanium(Ti)substrates for realizing good physical sterilization and biocompatibility.We first prepare TiO_(2) nanotubes(NT)with a diameter of about 80-100 nm and a length of about 5μm on Ti substrates by anodization,which is utilized as precursor.Then,we employ immersion treatment in different concentrations of phosphoric acid solution at 75℃ for 5 h to realize the transformation from TiO_(2) NT to TiO_(2) nano-flower structure.In addition,we studied the effects of phosphoric acid concentration(1 wt%,2.5 wt%,5 wt% and 10 wt%)on the TiO_(2) nano-flower structure,and the antibacterial properties and biocompatibility of the TiO_(2) nano-flower structure.The results show that TiO_(2) nano-flower structure become larger and thicker with the increase in the phosphoric acid concentration,and the thickness of the coating can reach 6.88μm.Meanwhile,the TiO_(2) nano-flower structure shows good physical sterilization effect,especially for the TiO_(2) nano-flower structure formed in 10 wt%H^(3)PO_(4) solution,the antibacterial rate can reach 95%.In addition,the TiO_(2) nano-flower structure have no toxicity to the osteoblasts and support cell growth.