期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
Physics-informed optimization for a data-driven approach in landslide susceptibility evaluation
1
作者 Songlin Liu Luqi Wang +3 位作者 Wengang Zhang Weixin Sun Yunhao Wang Jianping Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3192-3205,共14页
Landslide susceptibility mapping is an integral part of geological hazard analysis.Recently,the emphasis of many studies has been on data-driven models,notably those derived from machine learning,owing to their aptitu... Landslide susceptibility mapping is an integral part of geological hazard analysis.Recently,the emphasis of many studies has been on data-driven models,notably those derived from machine learning,owing to their aptitude for tackling complex non-linear problems.However,the prevailing models often disregard qualitative research,leading to limited interpretability and mistakes in extracting negative samples,i.e.inaccurate non-landslide samples.In this study,Scoops 3D(a three-dimensional slope stability analysis tool)was utilized to conduct a qualitative assessment of slope stability in the Yunyang section of the Three Gorges Reservoir area.The depth of the bedrock was predicted utilizing a Convolutional Neural Network(CNN),incorporating local boreholes and building on the insights from prior research.The Random Forest(RF)algorithm was subsequently used to execute a data-driven landslide susceptibility analysis.The proposed methodology demonstrated a notable increase of 29.25%in the evaluation metric,the area under the receiver operating characteristic curve(ROC-AUC),outperforming the prevailing benchmark model.Furthermore,the landslide susceptibility map generated by the proposed model demonstrated superior interpretability.This result not only validates the effectiveness of amalgamating mathematical and mechanistic insights for such analyses,but it also carries substantial academic and practical implications. 展开更多
关键词 physics-informed Machine learning Bedrock depth Scoops 3D Landslide susceptibility
下载PDF
A hybrid physics-informed data-driven neural network for CO_(2) storage in depleted shale reservoirs
2
作者 Yan-Wei Wang Zhen-Xue Dai +3 位作者 Gui-Sheng Wang Li Chen Yu-Zhou Xia Yu-Hao Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期286-301,共16页
To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) s... To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) sequestration models do not adequately consider multiple transport mechanisms.Moreover,the evaluation of CO_(2) storage processes usually involves laborious and time-consuming numerical simulations unsuitable for practical prediction and decision-making.In this paper,an integrated model involving gas diffusion,adsorption,dissolution,slip flow,and Darcy flow is proposed to accurately characterize CO_(2) storage in depleted shale reservoirs,supporting the establishment of a training database.On this basis,a hybrid physics-informed data-driven neural network(HPDNN)is developed as a deep learning surrogate for prediction and inversion.By incorporating multiple sources of scientific knowledge,the HPDNN can be configured with limited simulation resources,significantly accelerating the forward and inversion processes.Furthermore,the HPDNN can more intelligently predict injection performance,precisely perform reservoir parameter inversion,and reasonably evaluate the CO_(2) storage capacity under complicated scenarios.The validation and test results demonstrate that the HPDNN can ensure high accuracy and strong robustness across an extensive applicability range when dealing with field data with multiple noise sources.This study has tremendous potential to replace traditional modeling tools for predicting and making decisions about CO_(2) storage projects in depleted shale reservoirs. 展开更多
关键词 Deep learning physics-informed data-driven neural network Depleted shale reservoirs CO_(2)storage Transport mechanisms
下载PDF
An adaptive physics-informed deep learning method for pore pressure prediction using seismic data
3
作者 Xin Zhang Yun-Hu Lu +2 位作者 Yan Jin Mian Chen Bo Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期885-902,共18页
Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g... Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data. 展开更多
关键词 Pore pressure prediction Seismic data 1D convolution pyramid pooling Adaptive physics-informed loss function High generalization capability
下载PDF
MetaPINNs:Predicting soliton and rogue wave of nonlinear PDEs via the improved physics-informed neural networks based on meta-learned optimization
4
作者 郭亚楠 曹小群 +1 位作者 宋君强 冷洪泽 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期96-107,共12页
Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep lea... Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep learning-based methods to the forefront of research on numerical methods for partial differential equations.Among them,physics-informed neural networks(PINNs)are a new class of deep learning methods that show great potential in solving PDEs and predicting complex physical phenomena.In the field of nonlinear science,solitary waves and rogue waves have been important research topics.In this paper,we propose an improved PINN that enhances the physical constraints of the neural network model by adding gradient information constraints.In addition,we employ meta-learning optimization to speed up the training process.We apply the improved PINNs to the numerical simulation and prediction of solitary and rogue waves.We evaluate the accuracy of the prediction results by error analysis.The experimental results show that the improved PINNs can make more accurate predictions in less time than that of the original PINNs. 展开更多
关键词 physics-informed neural networks gradient-enhanced loss function meta-learned optimization nonlinear science
下载PDF
TCAS-PINN:Physics-informed neural networks with a novel temporal causality-based adaptive sampling method
5
作者 郭嘉 王海峰 +1 位作者 古仕林 侯臣平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期344-364,共21页
Physics-informed neural networks(PINNs)have become an attractive machine learning framework for obtaining solutions to partial differential equations(PDEs).PINNs embed initial,boundary,and PDE constraints into the los... Physics-informed neural networks(PINNs)have become an attractive machine learning framework for obtaining solutions to partial differential equations(PDEs).PINNs embed initial,boundary,and PDE constraints into the loss function.The performance of PINNs is generally affected by both training and sampling.Specifically,training methods focus on how to overcome the training difficulties caused by the special PDE residual loss of PINNs,and sampling methods are concerned with the location and distribution of the sampling points upon which evaluations of PDE residual loss are accomplished.However,a common problem among these original PINNs is that they omit special temporal information utilization during the training or sampling stages when dealing with an important PDE category,namely,time-dependent PDEs,where temporal information plays a key role in the algorithms used.There is one method,called Causal PINN,that considers temporal causality at the training level but not special temporal utilization at the sampling level.Incorporating temporal knowledge into sampling remains to be studied.To fill this gap,we propose a novel temporal causality-based adaptive sampling method that dynamically determines the sampling ratio according to both PDE residual and temporal causality.By designing a sampling ratio determined by both residual loss and temporal causality to control the number and location of sampled points in each temporal sub-domain,we provide a practical solution by incorporating temporal information into sampling.Numerical experiments of several nonlinear time-dependent PDEs,including the Cahn–Hilliard,Korteweg–de Vries,Allen–Cahn and wave equations,show that our proposed sampling method can improve the performance.We demonstrate that using such a relatively simple sampling method can improve prediction performance by up to two orders of magnitude compared with the results from other methods,especially when points are limited. 展开更多
关键词 partial differential equation physics-informed neural networks residual-based adaptive sampling temporal causality
下载PDF
Physics-informed deep learning for fringe pattern analysis
6
作者 Wei Yin Yuxuan Che +6 位作者 Xinsheng Li Mingyu Li Yan Hu Shijie Feng Edmund Y.Lam Qian Chen Chao Zuo 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第1期4-15,共12页
Recently,deep learning has yielded transformative success across optics and photonics,especially in optical metrology.Deep neural networks (DNNs) with a fully convolutional architecture (e.g.,U-Net and its derivatives... Recently,deep learning has yielded transformative success across optics and photonics,especially in optical metrology.Deep neural networks (DNNs) with a fully convolutional architecture (e.g.,U-Net and its derivatives) have been widely implemented in an end-to-end manner to accomplish various optical metrology tasks,such as fringe denoising,phase unwrapping,and fringe analysis.However,the task of training a DNN to accurately identify an image-to-image transform from massive input and output data pairs seems at best naive,as the physical laws governing the image formation or other domain expertise pertaining to the measurement have not yet been fully exploited in current deep learning practice.To this end,we introduce a physics-informed deep learning method for fringe pattern analysis (PI-FPA) to overcome this limit by integrating a lightweight DNN with a learning-enhanced Fourier transform profilometry (Le FTP) module.By parameterizing conventional phase retrieval methods,the Le FTP module embeds the prior knowledge in the network structure and the loss function to directly provide reliable phase results for new types of samples,while circumventing the requirement of collecting a large amount of high-quality data in supervised learning methods.Guided by the initial phase from Le FTP,the phase recovery ability of the lightweight DNN is enhanced to further improve the phase accuracy at a low computational cost compared with existing end-to-end networks.Experimental results demonstrate that PI-FPA enables more accurate and computationally efficient single-shot phase retrieval,exhibiting its excellent generalization to various unseen objects during training.The proposed PI-FPA presents that challenging issues in optical metrology can be potentially overcome through the synergy of physics-priors-based traditional tools and data-driven learning approaches,opening new avenues to achieve fast and accurate single-shot 3D imaging. 展开更多
关键词 optical metrology deep learning physics-informed neural networks fringe analysis phase retrieval
下载PDF
Incorporating Lasso Regression to Physics-Informed Neural Network for Inverse PDE Problem
7
作者 MengMa Liu Fu +1 位作者 Xu Guo Zhi Zhai 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期385-399,共15页
Partial Differential Equation(PDE)is among the most fundamental tools employed to model dynamic systems.Existing PDE modeling methods are typically derived from established knowledge and known phenomena,which are time... Partial Differential Equation(PDE)is among the most fundamental tools employed to model dynamic systems.Existing PDE modeling methods are typically derived from established knowledge and known phenomena,which are time-consuming and labor-intensive.Recently,discovering governing PDEs from collected actual data via Physics Informed Neural Networks(PINNs)provides a more efficient way to analyze fresh dynamic systems and establish PEDmodels.This study proposes Sequentially Threshold Least Squares-Lasso(STLasso),a module constructed by incorporating Lasso regression into the Sequentially Threshold Least Squares(STLS)algorithm,which can complete sparse regression of PDE coefficients with the constraints of l0 norm.It further introduces PINN-STLasso,a physics informed neural network combined with Lasso sparse regression,able to find underlying PDEs from data with reduced data requirements and better interpretability.In addition,this research conducts experiments on canonical inverse PDE problems and compares the results to several recent methods.The results demonstrated that the proposed PINN-STLasso outperforms other methods,achieving lower error rates even with less data. 展开更多
关键词 physics-informed neural network inverse partial differential equation Lasso regression scientific machine learning
下载PDF
Multi-scale physics-informed neural networks for solving high Reynolds number boundary layer flows based on matched asymptotic expansions
8
作者 Jianlin Huang Rundi Qiu +1 位作者 Jingzhu Wang Yiwei Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期76-81,共6页
Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at hig... Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at high Reynolds numbers without any data.The flow is divided into several regions with different scales based on Prandtl's boundary theory.Different regions are solved with governing equations in different scales.The method of matched asymptotic expansions is used to make the flow field continuously.A flow on a semi infinite flat plate at a high Reynolds number is considered a multi-scale problem because the boundary layer scale is much smaller than the outer flow scale.The results are compared with the reference numerical solutions,which show that the msPINNs can solve the multi-scale problem of the boundary layer in high Reynolds number flows.This scheme can be developed for more multi-scale problems in the future. 展开更多
关键词 physics-informed neural networks(PINNs) MULTI-SCALE Fluid dynamics Boundary layer
下载PDF
Accurate and efficient remaining useful life prediction of batteries enabled by physics-informed machine learning
9
作者 Liang Ma Jinpeng Tian +2 位作者 Tieling Zhang Qinghua Guo Chunsheng Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期512-521,共10页
The safe and reliable operation of lithium-ion batteries necessitates the accurate prediction of remaining useful life(RUL).However,this task is challenging due to the diverse ageing mechanisms,various operating condi... The safe and reliable operation of lithium-ion batteries necessitates the accurate prediction of remaining useful life(RUL).However,this task is challenging due to the diverse ageing mechanisms,various operating conditions,and limited measured signals.Although data-driven methods are perceived as a promising solution,they ignore intrinsic battery physics,leading to compromised accuracy,low efficiency,and low interpretability.In response,this study integrates domain knowledge into deep learning to enhance the RUL prediction performance.We demonstrate accurate RUL prediction using only a single charging curve.First,a generalisable physics-based model is developed to extract ageing-correlated parameters that can describe and explain battery degradation from battery charging data.The parameters inform a deep neural network(DNN)to predict RUL with high accuracy and efficiency.The trained model is validated under 3 types of batteries working under 7 conditions,considering fully charged and partially charged cases.Using data from one cycle only,the proposed method achieves a root mean squared error(RMSE)of 11.42 cycles and a mean absolute relative error(MARE)of 3.19%on average,which are over45%and 44%lower compared to the two state-of-the-art data-driven methods,respectively.Besides its accuracy,the proposed method also outperforms existing methods in terms of efficiency,input burden,and robustness.The inherent relationship between the model parameters and the battery degradation mechanism is further revealed,substantiating the intrinsic superiority of the proposed method. 展开更多
关键词 Lithium-ion batteries Remaining useful life physics-informed machine learning
下载PDF
Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions 被引量:3
10
作者 Hui Pang Longxing Wu +2 位作者 Jiahao Liu Xiaofei Liu Kai Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期1-12,I0001,共13页
Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this pap... Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this paper proposes a novel physics-informed neural network(PINN) approach for HGR estimation of LIBs under various driving conditions.Specifically,a single particle model with thermodynamics(SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR.Subsequently,the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory(BiLSTM) networks as physical information.And combined with other feature variables,a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted.Additionally,some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm(BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks.Eventually,combined with the HGR data generated from the validated virtual battery,it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test(DST) and worldwide light vehicles test procedure(WLTP),the mean absolute error under DST is 0.542 kW/m^(3),and the root mean square error under WLTP is1.428 kW/m^(3)at 25℃.Lastly,the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation. 展开更多
关键词 Lithium-ion batteries physics-informed neural network Bidirectional long-term memory Heat generation rate estimation Electrochemical model
下载PDF
Physics-informed neural networks with residual/gradient-based adaptive sampling methods for solving partial differential equations with sharp solutions 被引量:1
11
作者 Zhiping MAO Xuhui MENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第7期1069-1084,共16页
We consider solving the forward and inverse partial differential equations(PDEs)which have sharp solutions with physics-informed neural networks(PINNs)in this work.In particular,to better capture the sharpness of the ... We consider solving the forward and inverse partial differential equations(PDEs)which have sharp solutions with physics-informed neural networks(PINNs)in this work.In particular,to better capture the sharpness of the solution,we propose the adaptive sampling methods(ASMs)based on the residual and the gradient of the solution.We first present a residual only-based ASM denoted by ASMⅠ.In this approach,we first train the neural network using a small number of residual points and divide the computational domain into a certain number of sub-domains,then we add new residual points in the sub-domain which has the largest mean absolute value of the residual,and those points which have the largest absolute values of the residual in this sub-domain as new residual points.We further develop a second type of ASM(denoted by ASMⅡ)based on both the residual and the gradient of the solution due to the fact that only the residual may not be able to efficiently capture the sharpness of the solution.The procedure of ASMⅡis almost the same as that of ASMⅠ,and we add new residual points which have not only large residuals but also large gradients.To demonstrate the effectiveness of the present methods,we use both ASMⅠand ASMⅡto solve a number of PDEs,including the Burger equation,the compressible Euler equation,the Poisson equation over an Lshape domain as well as the high-dimensional Poisson equation.It has been shown from the numerical results that the sharp solutions can be well approximated by using either ASMⅠor ASMⅡ,and both methods deliver much more accurate solutions than the original PINNs with the same number of residual points.Moreover,the ASMⅡalgorithm has better performance in terms of accuracy,efficiency,and stability compared with the ASMⅠalgorithm.This means that the gradient of the solution improves the stability and efficiency of the adaptive sampling procedure as well as the accuracy of the solution.Furthermore,we also employ the similar adaptive sampling technique for the data points of boundary conditions(BCs)if the sharpness of the solution is near the boundary.The result of the L-shape Poisson problem indicates that the present method can significantly improve the efficiency,stability,and accuracy. 展开更多
关键词 physics-informed neural network(PINN) adaptive sampling high-dimension L-shape Poisson equation accuracy
下载PDF
Physics-Informed AI Surrogates for Day-Ahead Wind Power Probabilistic Forecasting with Incomplete Data for Smart Grid in Smart Cities 被引量:1
12
作者 Zeyu Wu Bo Sun +2 位作者 Qiang Feng Zili Wang Junlin Pan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期527-554,共28页
Due to the high inherent uncertainty of renewable energy,probabilistic day-ahead wind power forecasting is crucial for modeling and controlling the uncertainty of renewable energy smart grids in smart cities.However,t... Due to the high inherent uncertainty of renewable energy,probabilistic day-ahead wind power forecasting is crucial for modeling and controlling the uncertainty of renewable energy smart grids in smart cities.However,the accuracy and reliability of high-resolution day-ahead wind power forecasting are constrained by unreliable local weather prediction and incomplete power generation data.This article proposes a physics-informed artificial intelligence(AI)surrogates method to augment the incomplete dataset and quantify its uncertainty to improve wind power forecasting performance.The incomplete dataset,built with numerical weather prediction data,historical wind power generation,and weather factors data,is augmented based on generative adversarial networks.After augmentation,the enriched data is then fed into a multiple AI surrogates model constructed by two extreme learning machine networks to train the forecasting model for wind power.Therefore,the forecasting models’accuracy and generalization ability are improved by mining the implicit physics information from the incomplete dataset.An incomplete dataset gathered from a wind farm in North China,containing only 15 days of weather and wind power generation data withmissing points caused by occasional shutdowns,is utilized to verify the proposed method’s performance.Compared with other probabilistic forecastingmethods,the proposed method shows better accuracy and probabilistic performance on the same incomplete dataset,which highlights its potential for more flexible and sensitive maintenance of smart grids in smart cities. 展开更多
关键词 physics-informed method probabilistic forecasting wind power generative adversarial network extreme learning machine day-ahead forecasting incomplete data smart grids
下载PDF
Effective data sampling strategies and boundary condition constraints of physics-informed neural networks for identifying material properties in solid mechanics
13
作者 W.WU M.DANEKER +2 位作者 M.A.JOLLEY K.T.TURNER L.LU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第7期1039-1068,共30页
Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the ch... Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the characteristic of the material is highly nonlinear in nature,as is common in biological tissue.In this work,we identify unknown material properties in continuum solid mechanics via physics-informed neural networks(PINNs).To improve the accuracy and efficiency of PINNs,we develop efficient strategies to nonuniformly sample observational data.We also investigate different approaches to enforce Dirichlet-type boundary conditions(BCs)as soft or hard constraints.Finally,we apply the proposed methods to a diverse set of time-dependent and time-independent solid mechanic examples that span linear elastic and hyperelastic material space.The estimated material parameters achieve relative errors of less than 1%.As such,this work is relevant to diverse applications,including optimizing structural integrity and developing novel materials. 展开更多
关键词 solid mechanics material identification physics-informed neural network(PINN) data sampling boundary condition(BC)constraint
下载PDF
Meshfree-based physics-informed neural networks for the unsteady Oseen equations
14
作者 彭珂依 岳靖 +1 位作者 张文 李剑 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期151-159,共9页
We propose the meshfree-based physics-informed neural networks for solving the unsteady Oseen equations.Firstly,based on the ideas of meshfree and small sample learning,we only randomly select a small number of spatio... We propose the meshfree-based physics-informed neural networks for solving the unsteady Oseen equations.Firstly,based on the ideas of meshfree and small sample learning,we only randomly select a small number of spatiotemporal points to train the neural network instead of forming a mesh.Specifically,we optimize the neural network by minimizing the loss function to satisfy the differential operators,initial condition and boundary condition.Then,we prove the convergence of the loss function and the convergence of the neural network.In addition,the feasibility and effectiveness of the method are verified by the results of numerical experiments,and the theoretical derivation is verified by the relative error between the neural network solution and the analytical solution. 展开更多
关键词 physics-informed neural networks the unsteady Oseen equation convergence small sample learning
下载PDF
An artificial viscosity augmented physics-informed neural network for incompressible flow
15
作者 Yichuan HE Zhicheng WANG +2 位作者 Hui XIANG Xiaomo JIANG Dawei TANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第7期1101-1110,共10页
Physics-informed neural networks(PINNs)are proved methods that are effective in solving some strongly nonlinear partial differential equations(PDEs),e.g.,Navier-Stokes equations,with a small amount of boundary or inte... Physics-informed neural networks(PINNs)are proved methods that are effective in solving some strongly nonlinear partial differential equations(PDEs),e.g.,Navier-Stokes equations,with a small amount of boundary or interior data.However,the feasibility of applying PINNs to the flow at moderate or high Reynolds numbers has rarely been reported.The present paper proposes an artificial viscosity(AV)-based PINN for solving the forward and inverse flow problems.Specifically,the AV used in PINNs is inspired by the entropy viscosity method developed in conventional computational fluid dynamics(CFD)to stabilize the simulation of flow at high Reynolds numbers.The newly developed PINN is used to solve the forward problem of the two-dimensional steady cavity flow at Re=1000 and the inverse problem derived from two-dimensional film boiling.The results show that the AV augmented PINN can solve both problems with good accuracy and substantially reduce the inference errors in the forward problem. 展开更多
关键词 physics-informed neural network(PINN) artificial viscosity(AV) cavity driven flow high Reynolds number
下载PDF
Physics-informed deep learning for incompressible laminar flows 被引量:18
16
作者 Chengping Rao Hao Sun Yang Liu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第3期207-212,共6页
Physics-informed deep learning has drawn tremendous interest in recent years to solve computational physics problems,whose basic concept is to embed physical laws to constrain/inform neural networks,with the need of l... Physics-informed deep learning has drawn tremendous interest in recent years to solve computational physics problems,whose basic concept is to embed physical laws to constrain/inform neural networks,with the need of less data for training a reliable model.This can be achieved by incorporating the residual of physics equations into the loss function.Through minimizing the loss function,the network could approximate the solution.In this paper,we propose a mixed-variable scheme of physics-informed neural network(PINN)for fluid dynamics and apply it to simulate steady and transient laminar flows at low Reynolds numbers.A parametric study indicates that the mixed-variable scheme can improve the PINN trainability and the solution accuracy.The predicted velocity and pressure fields by the proposed PINN approach are also compared with the reference numerical solutions.Simulation results demonstrate great potential of the proposed PINN for fluid flow simulation with a high accuracy. 展开更多
关键词 physics-informed neural networks(PINN) Deep learning Fluid dynamics Incompressible laminar flow
下载PDF
Physics-informed deep learning for one-dimensional consolidation 被引量:2
17
作者 Yared W.Bekele 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第2期420-430,共11页
Neural networks with physical governing equations as constraints have recently created a new trend in machine learning research.In this context,a review of related research is first presented and discussed.The potenti... Neural networks with physical governing equations as constraints have recently created a new trend in machine learning research.In this context,a review of related research is first presented and discussed.The potential offered by such physics-informed deep learning models for computations in geomechanics is demonstrated by application to one-dimensional(1D)consolidation.The governing equation for 1D problems is applied as a constraint in the deep learning model.The deep learning model relies on automatic differentiation for applying the governing equation as a constraint,based on the mathematical approximations established by the neural network.The total loss is measured as a combination of the training loss(based on analytical and model predicted solutions)and the constraint loss(a requirement to satisfy the governing equation).Two classes of problems are considered:forward and inverse problems.The forward problems demonstrate the performance of a physically constrained neural network model in predicting solutions for 1D consolidation problems.Inverse problems show prediction of the coefficient of consolidation.Terzaghi’s problem,with varying boundary conditions,is used as a numerical example and the deep learning model shows a remarkable performance in both the forward and inverse problems.While the application demonstrated here is a simple 1D consolidation problem,such a deep learning model integrated with a physical law has significant implications for use in,such as,faster realtime numerical prediction for digital twins,numerical model reproducibility and constitutive model parameter optimization. 展开更多
关键词 physics-informed deep learning CONSOLIDATION Forward problems Inverse problems
下载PDF
A novel physics-informed framework for reconstruction of structural defects
18
作者 Qi LI Fushun LIU +2 位作者 Bin WANG DZLIU Zhenghua QIAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第11期1717-1730,共14页
The ultrasonic guided wave technology plays a significant role in the field of non-destructive testing as it employs acoustic waves with the advantages of high propagation efficiency and low energy consumption during ... The ultrasonic guided wave technology plays a significant role in the field of non-destructive testing as it employs acoustic waves with the advantages of high propagation efficiency and low energy consumption during the inspect process.However,the theoretical solutions to guided wave scattering problems with assumptions such as the Born approximation have led to the poor quality of the reconstructed results.Besides,the scattering signals collected from industry sectors are often noised and nonstationary.To address these issues,a novel physics-informed framework(PIF)for the quantitative reconstruction of defects by means of the integration of the data-driven method with the guided wave scattering analysis is proposed in this paper.Based on the geometrical information of defects and initial results obtained by the PIF-based analysis of defect reconstructions,a deep-learning neural network model is built to reveal the physical relationship between the defects and the noisy detection signals.This learning model is then adopted to assess and characterize the defect profiles in structures,improve the accuracy of the analytical model,and eliminate the impact of the noise pollution in the process of inspection.To demonstrate the advantages of the developed PIF for the complex defect reconstructions with the capability of denoising,several numerical examples are carried out.The results show that the PIF has greater accuracy for the reconstruction of defects in the structures than the analytical method,and provides a valuable insight into the development of artificial intelligence(AI)-assisted inspection systems with high accuracy and efficiency in the fields of structural integrity and condition monitoring. 展开更多
关键词 physics-informed deep-learning reconstruction of defects DENOISING
下载PDF
Physics-informed deep learning for digital materials
19
作者 Zhizhou Zhang Grace X Gu 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第1期52-57,共6页
In this work,a physics-informed neural network(PINN)designed specifically for analyzing digital mate-rials is introduced.This proposed machine learning(ML)model can be trained free of ground truth data by adopting the... In this work,a physics-informed neural network(PINN)designed specifically for analyzing digital mate-rials is introduced.This proposed machine learning(ML)model can be trained free of ground truth data by adopting the minimum energy criteria as its loss function.Results show that our energy-based PINN reaches similar accuracy as supervised ML models.Adding a hinge loss on the Jacobian can constrain the model to avoid erroneous deformation gradient caused by the nonlinear logarithmic strain.Lastly,we discuss how the strain energy of each material element at each numerical integration point can be calculated parallelly on a GPU.The algorithm is tested on different mesh densities to evaluate its com-putational efficiency which scales linearly with respect to the number of nodes in the system.This work provides a foundation for encoding physical behaviors of digital materials directly into neural networks,enabling label-free learning for the design of next-generation composites. 展开更多
关键词 physics-informed neural networks Machine learning Finite element analysis Digital materials Computational mechanics
下载PDF
Physics-Informed Deep Neural Network for Bearing Prognosis with Multisensory Signals
20
作者 Xuefeng Chen Meng Ma +2 位作者 Zhibin Zhao Zhi Zhai Zhu Mao 《Journal of Dynamics, Monitoring and Diagnostics》 2022年第4期200-207,共8页
Prognosis of bearing is critical to improve the safety,reliability,and availability of machinery systems,which provides the health condition assessment and determines how long the machine would work before failure occ... Prognosis of bearing is critical to improve the safety,reliability,and availability of machinery systems,which provides the health condition assessment and determines how long the machine would work before failure occurs by predicting the remaining useful life(RUL).In order to overcome the drawback of pure data-driven methods and predict RUL accurately,a novel physics-informed deep neural network,named degradation consistency recurrent neural network,is proposed for RUL prediction by integrating the natural degradation knowledge of mechanical components.The degradation is monotonic over the whole life of bearings,which is characterized by temperature signals.To incorporate the knowledge of monotonic degradation,a positive increment recurrence relationship is introduced to keep the monotonicity.Thus,the proposed model is relatively well understood and capable to keep the learning process consistent with physical degradation.The effectiveness and merit of the RUL prediction using the proposed method are demonstrated through vibration signals collected from a set of run-to-failure tests. 展开更多
关键词 deep learning physics-informed neural network(PiNN) Prognostics and Health Management(PHM) remaining useful life
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部