The research on flexible pressure sensors has drawn widespread attention in recent years,especially in the fields of health care and intelligent robots.In practical applications,the sensitivity of sensors directly aff...The research on flexible pressure sensors has drawn widespread attention in recent years,especially in the fields of health care and intelligent robots.In practical applications,the sensitivity of sensors directly affects the precision and integrity of weak pressure signals.Here,a pressure sensor with high sensitivity and a wide measurement range composed of porous fiber paper and 3D patterned electrodes is proposed.Multi-walled carbon nanotubes with excellent conductivity were evenly sprayed on the fiber paper to form the natural spatial conducting networks,while the copper-deposited polydimethylsiloxane films with micropyramids array were used as electrodes and flexible substrates.Increased conducting paths between electrodes and fibers can be obtained when high-density micro-pyramids fall into the porous structures of the fiber paper under external pressure,thereby promoting the pressure sensor to show an ultra-high sensitivity of 17.65 kPa^(-1)in the pressure range of 0–2 kPa,16 times that of the device without patterned electrodes.Besides,the sensor retains a high sensitivity of 2.06 kPa^(-1)in an ultra-wide measurement range of 150 kPa.Moreover,the sensor can detect various physiological signals,including pulse and voice,while attached to the human skin.This work provides a novel strategy to significantly improve the sensitivity and measurement range of flexible pressure sensors,as well as demonstrates attractive applications in physiological signal monitoring.展开更多
This paper is an investigation on negative emotions states recognition by employing of Fuzzy Adaptive Resonance Theory (Fuzzy-ART) considering the changes in activities of autonomic nervous system (ANS). Specific psyc...This paper is an investigation on negative emotions states recognition by employing of Fuzzy Adaptive Resonance Theory (Fuzzy-ART) considering the changes in activities of autonomic nervous system (ANS). Specific psychological experiments were designed to induce appropriate physiological responses on individuals in order to acquire a suitable database for training, validating and testing the proposed procedure. In this research, the three physiological applied signals are Galvanic Skin Response (GSR), Heart Rate (HR) and Respiration Rate (RR). The first experiment which is named Shock was designed to determine a criterion for the change of physiological signals of each individual. In the second one, a combination of two sets of questions has been asked from the subjects to induce their emotions. Finally, Physiological responses were analyzed by Fuzzy-ART to recognize which question excites the negative emotions. Detecting negative emotions from neutral is obtained with total accuracy of 94%.展开更多
基金supported by the National Key R&D Program of China(Grant Nos.2019YFE0120300,2019YFF0301802)National Natural Science Foundation of China(Grant Nos.52175554,62101513,51975542)+3 种基金Natural Science Foundation of Shanxi Province(Grant No.201801D121152)Shanxi“1331 Project”Key Subject Construction(Grant No.1331KSC)National Defense Fundamental Research ProjectResearch Project Supported by Shan Xi Scholarship Council of China(Grant No.2020-109)。
文摘The research on flexible pressure sensors has drawn widespread attention in recent years,especially in the fields of health care and intelligent robots.In practical applications,the sensitivity of sensors directly affects the precision and integrity of weak pressure signals.Here,a pressure sensor with high sensitivity and a wide measurement range composed of porous fiber paper and 3D patterned electrodes is proposed.Multi-walled carbon nanotubes with excellent conductivity were evenly sprayed on the fiber paper to form the natural spatial conducting networks,while the copper-deposited polydimethylsiloxane films with micropyramids array were used as electrodes and flexible substrates.Increased conducting paths between electrodes and fibers can be obtained when high-density micro-pyramids fall into the porous structures of the fiber paper under external pressure,thereby promoting the pressure sensor to show an ultra-high sensitivity of 17.65 kPa^(-1)in the pressure range of 0–2 kPa,16 times that of the device without patterned electrodes.Besides,the sensor retains a high sensitivity of 2.06 kPa^(-1)in an ultra-wide measurement range of 150 kPa.Moreover,the sensor can detect various physiological signals,including pulse and voice,while attached to the human skin.This work provides a novel strategy to significantly improve the sensitivity and measurement range of flexible pressure sensors,as well as demonstrates attractive applications in physiological signal monitoring.
文摘This paper is an investigation on negative emotions states recognition by employing of Fuzzy Adaptive Resonance Theory (Fuzzy-ART) considering the changes in activities of autonomic nervous system (ANS). Specific psychological experiments were designed to induce appropriate physiological responses on individuals in order to acquire a suitable database for training, validating and testing the proposed procedure. In this research, the three physiological applied signals are Galvanic Skin Response (GSR), Heart Rate (HR) and Respiration Rate (RR). The first experiment which is named Shock was designed to determine a criterion for the change of physiological signals of each individual. In the second one, a combination of two sets of questions has been asked from the subjects to induce their emotions. Finally, Physiological responses were analyzed by Fuzzy-ART to recognize which question excites the negative emotions. Detecting negative emotions from neutral is obtained with total accuracy of 94%.
文摘恐惧程度的客观评价在心理健康评估和职业能力评测中具有重要的作用。在沉浸式训练过程中,生理和运动数据有助于提升交互界面设计,增加虚拟训练的安全性。文中使用头戴式VR系统HTC Vive实现沉浸式VR体验,利用OpenVR开源软件包采集控制器和头部的位置信息,并结合Equivital belt EQ02 Lifemonitor所采集的心电信号、躯体加速度实现多种信号的特征提取。文中使用递归特征消除的特征排序方法和支持向量回归从50个生理及运动特征中选取了10个特征。基于自测恐惧值和特征的多元多项式回归实现了准确率为90%的二分类,即完成了对受试者恐惧或者非恐惧的分类。