The Clarion-Clipperton Zone(CCZ)hosts one of the largest known oceanic nodule fields worldwide and is regulated by the International Seabed Authority.A baseline assessment of diversity and distribution patterns is ess...The Clarion-Clipperton Zone(CCZ)hosts one of the largest known oceanic nodule fields worldwide and is regulated by the International Seabed Authority.A baseline assessment of diversity and distribution patterns is essential for reliable predictions of disturbed ecosystem response scenarios for sustained commercial activities in the future.In the present study,the spatial patterns and diversity of phytoplankton communities were analyzed along with upper ocean biogeochemistry,in the licensed China Ocean Mineral Resources R&D Association(COMRA)contract area and the surrounding western CCZ between August 21 and October 8,2017.Results indicated this was a typical low-nutrient low-chlorophyll a(Chl a)environment,characterized by low levels of phytoplankton abundance and diversity.In total 112 species belonging to 4 phyla were recorded(>10μm),with species counts including 82 diatoms,27 dinoflagellates,1 cyanobacteria and 2 chrysophyte.Dominant taxa in successive order of descending abundance and occurrence included Nizschia marina,Cyclotella stylorum,Dactyliosolen mediterraneus,Rhizosolenia setigera,Pseudo-nitzschia delicatissima,Thalassiothrix frauenfeldii,Synedra sp.,Chaetoceros simplex and Pseudo-nitzschia circumpora.The depth-averaged abundance and Chl a concentrations were(265±233)cells/L and(0.27±0.30)μg/L,respectively.Diatoms accounted for 90.94%of the community with(241±223)cells/L,while dinoflagellates accounted for 5.67%and(15±13)cells/L.The distribution pattern exhibited the same trend as abundance,Chl a and species richness,showing subsurface maximum levels at around 100 m,with stations near 10°N having higher levels than in the north.Cluster analysis was performed in two assemblages,relating to geographic locations to the south and north of 12°N.The subsurface maximum of abundance,Chl a,species richness,dissolved oxygen and nitrite were generally corresponding to the presence of high salinity North Pacific Central Water at depths of 50-120 m.Higher availability of nitrate,phosphate and silicic acid in the subsurface may account for the shift in phytoplankton distribution,as shown by redundancy correspondence and spearman correlation analysis.Diel variation in an anchor station demonstrated prominent species succession without significant differences in oceanographic variables,among which diatoms succession resulted from the light limitation,while dinoflagellate diel variation mainly related to lateral transport of water masses.The observed patchiness in spatial phytoplankton distributional patterns was attributed to upper ocean environmental gradients in the CCZ.The baseline generated in this study could be analyzed using current conservation strategy programs associated with deep-sea mining.展开更多
An annual investigation on phytoplankton communities was conducted to reveal the effects of nutrients on phytoplankton assemblages in Lake Taihu,East China. A total of 78 phytoplankton taxa were identified. Phytoplank...An annual investigation on phytoplankton communities was conducted to reveal the effects of nutrients on phytoplankton assemblages in Lake Taihu,East China. A total of 78 phytoplankton taxa were identified. Phytoplankton biomass was higher in the northern part of the lake than in the southern part. Cyanobacteria and Bacillariophyta alternated dominance in the northern area,where algal blooms often appear,and co-dominated in the southern area. In the northern part,the proportions of cyanobacteria and Bacillariophyta varied significantly in total biovolume,both along the phosphorus(P) gradient,and between total nitrogen levels(≤3 mg/L and >3 mg/L TN). The proportions of cyanobacteria and Bacillariophyta had no signif icant variations in total biovolume along P and N(nitrogen) gradients in the southern part. Correlation analysis and CCA results revealed that P was the key factor regulating phytoplankton community structure. Nitrogen was also important for the phytoplankton distribution pattern. It was concluded that nutrient structure was heterogeneous in space and shaped the distribution pattern of phytoplankton in the lake. Both exogenous P and internally sourced Prelease needs to be considered. N reduction should be considered simultaneously with P control to efficiently reduce eutrophication and algal blooms.展开更多
Understanding the dynamics of phytoplankton communities in coastal zones is crucial for the management and conservation of coastal ecosystems.Previous research indicated that the phytoplankton community structure and ...Understanding the dynamics of phytoplankton communities in coastal zones is crucial for the management and conservation of coastal ecosystems.Previous research indicated that the phytoplankton community structure and dominant taxa in the Bohai Sea(BHS)have exhibited significant shifts from the 1990s to the early 2010s in response to environmental changes,especially the change in nutrient structure.This study comprehensively investigated the variations in net-collected phytoplankton(>76μm)community structure,diversity,and environmental factors in the BHS during the late summers of 2011-2020,aiming to understand the recent trend in phytoplankton community structure and to explore the interactions between the communities and the environment.During the study period,the nutrient status in the BHS was characterized by a decrease in dissolved inorganic nitrogen(DIN)concentration,an increase in dissolved inorganic phosphorus(DIP)concentration,and a return of the nitrogen-to-phosphorus(N/P)molar ratio(hereinafter referred to as N/P ratio)to the Redfield ratio since 2016.The eutrophication index(EI)in the BHS remained stable and was generally at a low level(<1).The Dia/Dino index fluctuated but did not show an obvious trend.Overall,the eutrophication,the imbalance in nutrient ratio,and the shift in phytoplankton community structure did not continue during the study period.The increased abundance of phytoplankton was strongly associated with elevated concentrations of DIN,as well as higher N/P and nitrogen-to-silicon(N/Si)ratios,whereas the greater diversity was strongly linked to higher concentrations of DIP.Diatoms and dinoflagellates showed significant differences in their interactions with the environment,and their relative dominance was related to water column depth and stratification intensity;their impacts on the phytoplankton community diversity were also significantly different.The variations of certain dominant species,i.e.,Skeletonema costatum,Paralia sulcata,and Tripos longipes,exhibited strong links to the changes in nutrient structure in the BHS.The findings of this study contribute to understanding the regional environmental changes and provide insights into the adaptive strategies of coastal ecosystems in response to environmental shifts and fluctuations.展开更多
Understanding the relative roles of local environmental effects and spatial effects on phytoplankton community is of essential importance to study the biogeography of them at regional scale. However, the determinants ...Understanding the relative roles of local environmental effects and spatial effects on phytoplankton community is of essential importance to study the biogeography of them at regional scale. However, the determinants that driving the biogeography of phytoplankton communities in the coastal area of northern Zhejiang still remained unclear. We surveyed phytoplankton community compositions in water columns associated with environmental and spatial influences across five subzones that geographically covering this region over four seasons. Diatoms and dinoflagellates were recorded as the main dominant groups and Coscinodiscus oculs-iridis, Coscinodiscus jonesianus, and Skeletonema costatum, were identified as the major abundant species existing in all seasons.Spatially structured environmental conditions, rather than pure spatial or environmental factors, substantially shaped the biogeography of phytoplankton community, with the former mainly comprised of water temperature,dissolved oxygen, phosphate, pH, and salinity, and the latter referring to a non-negligible factor. This study was the first integrated research that combining environmental filtering with spatial factors in structuring phytoplankton communities at a complete tempo-spatial scale. Our results may facilitate to the further study of harmful algal blooms early-warning in this region.展开更多
Microorganisms play a key role in aquatic ecosystems.Recent studies show that keystone taxa in microbial community could change the community structure and function.However,most previous studies focus on abundant taxa...Microorganisms play a key role in aquatic ecosystems.Recent studies show that keystone taxa in microbial community could change the community structure and function.However,most previous studies focus on abundant taxa but neglected low abundant ones.To clarify the seasonal variation of bacterial and microalgal communities and understand their synergistic adaptation to diff erent environmental factors,we studied the bacterial and eukaryotic phytoplankton communities in Fenhe River that runs through Taiyuan City,central China,and their seasonal co-occurrence patterns using 16S and 18S rDNA sequencing.Results indicate that positive interaction of eukaryotic phytoplankton network was more active than negative one except winter,indicating that the cooperation(symbiotic phenomenon in which phytoplankton are interdependent and mutually benefi cial)among them could improve the adaption of microbial community to the local environmental changes and maintain the stability of microbial network.The main genera that identifi ed as keystone taxa in bacterial network were Salinivibrio and Sphingopyxis of Proteobacteria and they could respond to the variation of nitrite and make use of it,while those that identifi ed as keystone taxa in eukaryotic phytoplankton network were Pseudoschroederia and Nannochloris,and they were more susceptible to nitrate and phosphate.Mychonastes and Cryptomonas were closely related to water temperature.However,the loss of the co-occurrence by environmental factor changes aff ected the stability of network structure.This study provided a reference for analyzing relationship between bacteria and eukaryotic phytoplankton and revealing potential importance of keystone taxa in similar ecological domains in carbon,nitrogen,and phosphorus dynamics.展开更多
Water scarcity and pollution pose a threat to the sustainable development of cities and society.Therefore,it is crucial to analyze the hydrochemical characteristics and carbon dynamics of waterdeficient areas.Taking t...Water scarcity and pollution pose a threat to the sustainable development of cities and society.Therefore,it is crucial to analyze the hydrochemical characteristics and carbon dynamics of waterdeficient areas.Taking the Taiyuan section of Fenhe River as the research object,we systematically explored the hydrochemical characteristics of surface water and its evolutionary processes,as well as the ecological effect of algal carbonic anhydrase in carbon cycle using the hydrochemical evolution method and correlation analysis.The ternary diagram demonstrates that the main water chemical type in Fenhe River was SO^(2-)_(4)·Cl^(-)-Na^(+).The Gibbs and end-member diagrams of each ion display that the chemical composition of surface water was mainly controlled by silicate decomposition.The chemical ions originated mainly from dissolution of some minerals,such as plagioclase,halite,dolomite,calcite,and gypsum.The diatoms had a lower CO_(2)requirement because they exhibited a higher abundance at a lower partial pressure of CO_(2)(p CO_(2)).However,high CO_(2)concentration had a positive effect on cyanobacteria,which reduced the active transport of HCO_(3)^(-),saved the energy needed for this part of active transport,and indirectly improved the overall photosynthetic efficiency of algae.Carbonic anhydrase(CA)activity was significantly negatively correlated with p CO_(2)and positively correlated with HCO_(3)^(-)concentration,indicating that CA in water promoted the conversion of CO_(2)to HCO_(3)^(-).The HCO_(3)^(-)generated from this process continued to participate in the erosion of silicate rocks,sequestering CO_(2)in the form of Ca CO_(3),which has a non-negligible impact on the carbon sink in the Fenhe River.These consequences may have important implications for the biogeochemical cycling occurring in urban water.展开更多
Phytoplankton species composition and species succession were determined in 1998-1999 based on 2 nestle investigation cruises in the Bohai Sea and two monthly monitoring stations at Penglai and Changdao for 15 months...Phytoplankton species composition and species succession were determined in 1998-1999 based on 2 nestle investigation cruises in the Bohai Sea and two monthly monitoring stations at Penglai and Changdao for 15 months. The seasonal succession and pathway of phytoplankton community in the Bohai Sea were discussed complementarily with history data. The main process of Phytoplankton community development in the Bohai Sea was controlled by temperature and nutrient replenishes. There were two cell abundance peaks in an annual variation, the main peak in April and the secondary peak in September. In winter, the cell abundance was low due to the low temperature, the phytoplankton community was mainly made up of small-celled diataoms. In spring, the phytoplankton community was developed very quickly by small-celled diatom in suitable conditions of temperature and nutrients. In summer, the cell abundance decreased and big-celled diatoms became predominated. In autumn, because of the replenish of nutrient, big-celled diatoms and dinoflagellates formed another cell abundance peak. during the annual variation of phytoplankton community in the Bohai Sea, species succession was the main process of community development, the species sequence just occur at special areas and special periods. The evolution of phytoplankton community in the Bohai Sea accords with the hypothesis of Margalef's phytoplankton community of four stages. But the size feature is contrary to the hypothesis, which may be caused by nutrient replenish in autumn in Bohai Sea and the top to down control.展开更多
Phytoplankton assemblages in the subtrophical oligotrophic Lake Fuxian, the second deepest lake in China, were investigated monthly from September 2002 to August 2003. A total of 113 species belonging to seven phyla w...Phytoplankton assemblages in the subtrophical oligotrophic Lake Fuxian, the second deepest lake in China, were investigated monthly from September 2002 to August 2003. A total of 113 species belonging to seven phyla were identified, among them, a filamentous green alga, Mougeotia sp., dominated almost throughout the study period and comprised most of the total phytoplankton biomass. Mougeotia sp. has made a substantial development during the past decades: it was absent in 1957, only occasionally present in 1983, increased substantially in 1993, and became predominant in 2002—2003. It is likely that natural invasion of the Taihu Lake noodlefish(Neosalanx taihuensis) has led to a change of dominant herbivorous zooplankton from small to large calanoid, which has increased grazing pressure on small edible algae, and thus has indirectly favored the development of the inedible filamentous Mougeotia sp.展开更多
The aim of this study was to determine the phytoplankton community structures of reservoirs of different trophic status, located in a cold region. Physical and chemical variables and the phytoplankton communities were...The aim of this study was to determine the phytoplankton community structures of reservoirs of different trophic status, located in a cold region. Physical and chemical variables and the phytoplankton communities were investigated in two reservoirs (Xiquanyan Reservoir and Taoshan Reservoir) in Northeast China in 2009. The two reservoirs showed strong seasonal fluctuations in their physical and chemical composition. Results of the trophic status index indicated that Xiaquanyan Reservoir was mesotrophic, whilst Taoshan Reservoir was eutrophic. Diatoms were the dominant phytoplankton group in Xiquanyan Reservoir throughout all seasons of the study, while in Taoshan Reservoir, diatoms dominated in spring, and cyanobacteria dominated in summer and autumn. This difference was resulted from differences in local environmental factors, including nutrients and hydrology. This study suggests that in mesotrophic reservoirs, nutrients played a key role in controlling seasonal phytoplankton successions, whereas in eutrophic reservoirs water temperature was the key factor in a cold region. Notably, the dominant species in summer in the Taoshan Reservoir was Microcystis, which may produce toxins depending on the ambient conditions, and presenting a risk of local toxin contamination.展开更多
Both nitrate((NO_3)^-) and soluble reactive phosphate((PO_4)^(3-)) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s.Within the same period in ...Both nitrate((NO_3)^-) and soluble reactive phosphate((PO_4)^(3-)) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s.Within the same period in the sea area,with surface salinity>30,(NO_3)^-concentration has shown an obvious increase,(PO_4)^(3-) has not changed greatly and dissolved reactive silica((SiO_3)^(2-)) has deceased dramatically.An examination of the elemental ratio of(NO_3)^-to(PO_4)^(3-) at the mouth of the Changjiang River did not show a systematic trend from the 1960s to 2000s largely because both nutrients increased simultaneously.In comparison,the elemental ratio of dissolved inorganic nitrogen(DIN) to(PO_4)^(3-) in surface seawater,with salinity>22,has shown a clearly increasing trend.Furthermore,an overall historical change of the(SiO_3)^(2-):(PO_4)^(3-) ratio has undergone a reverse trend in this area.Based on the changes of(SiO_3)^(2-):(PO_4)^(3-) and DIN:(PO_4)^(3-) ratios,we can conclude that an overall historical change of(SiO_3)^(2-):DIN ratio has decreased in this area from the 1950-1960s to 2000s.The argument that phytoplankton productivity in the Changjiang estuary has been enhanced by increasing nutrient input from the riverine transport was supported by these results.A comparative study analyzing the shift of phytoplankton composition from the mid-1980s to 2000s was also made.The results indicated that the average yearly percentage of diatom species in the Changjiang estuary has decreased from 84.6% during 1985-1986 to 69.8% during 2004-2005.Furthermore,the average yearly percentage of diatom abundance in the Changjiang estuary decreased from 99.5% during to 75.5% over the same time period,while the abundance of dinoflagellates has increased dramatically,from 0.7% to 25.4%.展开更多
CHEMTAX analysis of high-performance liquid chromatography (HPLC) pigment was conducted to study phytoplankton community structure in the northern Bering Sea shelf, where a seasonal subsurface cold pool emerges. The...CHEMTAX analysis of high-performance liquid chromatography (HPLC) pigment was conducted to study phytoplankton community structure in the northern Bering Sea shelf, where a seasonal subsurface cold pool emerges. The results showed that fucoxanthin (Fuco) and chlorophyll a (Chl a) were the most abundant diagnostic pigments, with the integrated water column values ranging from 141 to 2160 μg/m2 and 477 to 5 535 μg/m2, respectively. Moreover, a diatom bloom was identified at Sta. BB06 with the standing stock of Fuco up to 9214 μg/m3. The results of CHEMTAX suggested that the phytoplankton community in the northern Bering Sea shelf was dominated by diatoms and chrysophytes with an average relative contribu- tion to Chl a of 80% and 12%, respectively, followed by chlorophytes, dinoflagellates, and cryptophytes. Dia- toms were the absolutely dominant algae in the subsurface cold pool with a relative contribution exceeding 90%, while the contribution of chrysophytes was generally higher in oligotrophic upper water. Additionally, the presence of a cold pool would tend to favor accumulation of diatom biomass and a bloom that occurred beneath the halocline would be beneficial to organic matter sinks, which suggests that a large part of the phytoplankton biomass would settle to the seabed and support a rich benthic biomass.展开更多
Phytoplankton productivity and community structure in marginal seas have been altered significantly during the past three decades, but it is still a challenge to distinguish the forcing mechanisms between climate chan...Phytoplankton productivity and community structure in marginal seas have been altered significantly during the past three decades, but it is still a challenge to distinguish the forcing mechanisms between climate change and anthropogenic activities. High time-resolution biomarker records of two 210Pb-dated sediment cores(#34: 28.5°N, 122.272°E; CJ12-1269: 28.861 9°N, 122.515 3°E) from the Min-Zhe coastal mud area were compared to reveal changes of phytoplankton productivity and community structure over the past 100 years. Phytoplankton productivity started to increase gradually from the 1970 s and increased rapidly after the late 1990 s at Site #34; and it started to increase gradually from the middle 1960 s and increased rapidly after the late 1980 s at Site CJ12-1269. Productivity of Core CJ12-1269 was higher than that of Core #34. Phytoplankton community structure variations displayed opposite patterns in the two cores. The decreasing D/B(dinosterol/brassicasterol) ratio of Core #34 since the 1960 s revealed increased diatom contribution to total productivity. In contrast, the increasing D/B ratio of Core CJ12-1269 since the 1950 s indicated increased dinoflagellate contribution to total productivity. Both the productivity increase and the increased dinoflagellate contribution in Core CJ12-1269 since the 1950–1960s were mainly caused by anthropogenic activities, as the location was closer to the Changjiang River Estuary with higher nutrient concentration and decreasing Si/N ratios. However, increased diatom contribution in Core #34 is proposed to be caused by increased coastal upwelling, with higher nutrient concentration and higher Si/N ratios.展开更多
Systematic studies of the changes in dissolved inorganic nitrogen(DIN) and dissolved inorganic phosphorus(DIP) and their effects on phytoplankton over the last 30 years in the Bohai Sea are presented.The amount of sew...Systematic studies of the changes in dissolved inorganic nitrogen(DIN) and dissolved inorganic phosphorus(DIP) and their effects on phytoplankton over the last 30 years in the Bohai Sea are presented.The amount of sewage disposal,use of fertilizer and the Huanghe River runoff were found to have a significant influence on the DIN or DIP concentrations in the Bohai Sea over the last 30 years.Moreover,the changes in DIN and DIP resulted in changes in the limiting nutrients of phytoplankton in the Bohai Sea from nitrogen in the early 1980s to nitrogen-phosphorus in the late 1980s,and then to phosphorus after the 1990s.In addition,changes in nitrogen and phosphorus had a significant effect on the phytoplankton community structure.The half saturation constant(Ks) was used to evaluate the effect of nutrients on the phytoplankton community structure in the Bohai Sea over the last 30 years.Cell abundance percentages of dominant phytoplankton species with high Ks values for phosphorus and low Ks values for nitrogen have decreased since the 1980s,while those of dominant phytoplankton species with low Ks values for phosphorus and high Ks values for nitrogen increased during this period.展开更多
The concentration and composition of nutrients,such as N,P,and Si,respond to biogeochemical processes and in turn,impact the phytoplanktons'community structure and primary production.In this study,historical data ...The concentration and composition of nutrients,such as N,P,and Si,respond to biogeochemical processes and in turn,impact the phytoplanktons'community structure and primary production.In this study,historical data was systematically analyzed to identify long-term variations in nutrient trends,red tide frequency,phytoplankton community abundance,and dominant species succession in the southern Yellow Sea(SYS).Results showed that N/P concentration ratios dramatically increased as a function of increasing dissolved inorganic nitrogen concentrations,and Si/N concentration ratios were generally larger than 1,indicating that N limitation morphed to P limitation and potentially to Si limitation,which impacted the phytoplankton community.Furthermore,inter-annual trends over the past 50 years show that phytoplankton community abundance has been higher in spring and summer,relative to autumn and winter.Moreover,with respect to red tide frequency,diatom abundance gradually decreased,while that of dinoflagellates gradually increased.Dominant species succession showed that the phytoplankton community exhibited an evident tendency to transform from diatoms to dinoflagellates.These research results clearly depict the presence of an important correlation between the phytoplankton community and nutrient structure in the SYS.展开更多
Phytoplankton and environmental variables were measured monthly from July 2009 to August 2011 in the Maixi River from the estuary to Baihua Reservoir in the Maotiao River catchment, southwestern China, to understand p...Phytoplankton and environmental variables were measured monthly from July 2009 to August 2011 in the Maixi River from the estuary to Baihua Reservoir in the Maotiao River catchment, southwestern China, to understand phytoplankton community structure and environmental factors. The relationship between phytoplankton community structure and environmental factors including hydrological, meteorological, physical, and chemical variables were explored using multivariate analysis. A total of 81 taxa of phytoplankton were identified, which were mainly composed of chlorophyta, bacillariophyta, and cyanobacteria. The phytoplankton community was dominated by Pseudanabaena limnetica during summer and fall and by Cyclotella meneghiniana during winter and spring. The abundance of phytoplankton ranged from 0.24~ 104 cells/L to 33.45x 106 cells/L, with the minimum occurring during February 2010 and the maximum during July 2009. The phytoplankton community was dominated mainly by cyanobacteria from April to September, and by bacillariophyta and pyrrophyta from October to March. Canonical correspondence analysis showed that temperature, pH values, and orthophosphate were the most important driving factors regulating the composition and dynamics of the phytoplankton community in the estuary. Cyanobacteria and euglenophyta abundance and biomass were affected mainly by temperature and pH values, while most chlorophyta and bacillariophyta were influenced by the concentrations of nutrients.展开更多
Nutrients and photosynthesis pigments were investigated in the western Arctic Ocean during the 3rd Chinese Arctic Research Expedition Cruise in summer 2008. The study area was divided into five provinces using the K- ...Nutrients and photosynthesis pigments were investigated in the western Arctic Ocean during the 3rd Chinese Arctic Research Expedition Cruise in summer 2008. The study area was divided into five provinces using the K- means clustering method based on the physical and chemical characteristics of the sea water, and to discuss the distribution of the phytoplankton community structure in these provinces. CHEMTAX software was performed using HPLC pigments to estimate the contributions of eight algal classes to the total chlorophyll a (TChl a). The results showed that on the Chukchi Shelf, the Pacific Ocean inflow mainly controlled the Chl a biomass and phytoplankton communities by nutrient concentrations. The high nutrient Anadyr Water and Bering Shelf Water (AnW and BSW) controlled region have high Chl a levels and the diatom dominated community structure. In contrast, in the region occupied by low-nutrient like Alaska Coastal Water (ACW), the Chl a biomass was low, with pico- and nano-phytoplankton as dominated species, such as prasinophytes, chrysophytes and cryptophytes. However, over the off-shelf, the ice cover condition which would affect the physical and nutrient concentrations of the water masses, in consequence had a greater impact on the phytoplankton community structure. Diatom dominated in ice cover region and its contribution to Chl a biomass was up to 75%. In the region dose to the Mendeleev Abyssal Plain (MAP), controlled by sea-ice melt water with relatively high salinity (MW-HS), higher nutrient and Chl a concentrations were found and the phytoplankton was dominated by pico- and nano-algae, while the diatom abundance reduced to 33%. In the southern Canada Basin, an ice-free basin (IfB) with the lowest nutrient concentrations and most freshened surface water, low Chl a biomass was a consequence of low nutrients. The ice retreating and a prolonged period of open ocean may not be beneficial to the carbon export efficiency due to reducing the Chl a biomass or intriguing smaller size algae growth.展开更多
With the rapid development of economy and increase of population in the drainage areas, the nutrient loading has increased dramatically in the Changjiang estuary and adjacent coastal waters. To properly assess the imp...With the rapid development of economy and increase of population in the drainage areas, the nutrient loading has increased dramatically in the Changjiang estuary and adjacent coastal waters. To properly assess the impact of nutrient enrichment on phytoplankton community, seasonal microcosm experiments were conducted during August 2010-July 2011 in the coastal waters of Zhejiang Province. The results of the present study indicated that the chl a concentration, cell abundance, diversity indices, species composition and community succession of the phytoplankton varied significantly with different N/P ratios and seasons. Higher growth was observed in the 64:1 (spring), 32:1 (summer), 16:1 (autumn) and 128:1,256:1 (winter) treatments, respectively. The values of Shannon-Wiener index (H) and Pielou evenness index (J) were lower in the 8:1 and 16:1 treatments in autumn test, while H value was higher in the 128:1 and 8:1 treatments in winter test. A definite community succession order from diatoms to dinoflagel lares was observed in the autumn and winter tests, while the diatoms dominated the community throughout the culture in the spring and summer tests.展开更多
The seasonal variations in phytoplankton community structure were investigated for the Sanggou Bay (SGB) and the adjacent Ailian Bay (ALB) and Lidao Bay (LDB) in Shandong Peninsula,eastern China.The species comp...The seasonal variations in phytoplankton community structure were investigated for the Sanggou Bay (SGB) and the adjacent Ailian Bay (ALB) and Lidao Bay (LDB) in Shandong Peninsula,eastern China.The species composition and cell abundance of phytoplankton in the bay waters in spring (April 2011),summer (August 2011),autumn (October 2011),and winter (January 2012) were examined using the Uterm6hl method.A total of 80 taxa of phytoplankton that belong to 39 genera of 3 phyla were identified.These included 64 species of 30 genera in the Phylum Bacillariophyta,13 species of 8 genera in the Phylum Dinophyta,and 3 species of 1 genus in the Phylum Chrysophyta.During the four seasons,the number of phytoplankton species (43) was the highest in spring,followed by summer and autumn (40),and the lowest number ofphytoplankton species (35) was found in winter.Diatoms,especially Paralia sulcata (Ehrenberg) Cleve and Coscinodiscus oculus-iridis Ehrenberg,were predominant in the phytoplankton community throughout the study period,whereas the dominance of dinoflagellate appeared in summer only.The maximum cell abundance of phytoplankton was detected in summer (average 8.08 × 103 cells L-1) whereas their minimum abundance was found in autumn (average 2.60 x 103 cellsL-1).The phytoplankton abundance was generally higher in the outer bay than in the inner bay in spring and autumn.In summer,the phytoplankton cells were mainly concentrated in the south of inner SGB,with peak abundance observed along the western coast.In winter,the distribution of phytoplankton cells showed 3 patches,with peak abundance along the western coast as well.On seasonal average,the Shannon-Wiener diversity indices of phytoplankton community ranged from 1.17 to 1.78 (autumn 〉 summer 〉 spring 〉 winter),and the Pielou's evenness indices of phytoplankton ranged from 0.45 to 0.65 (autumn 〉 spring 〉 summer〉 winter).According to the results of canonical correspondence analysis,phosphate level was the major factor that limited the occurrence of P.sulcata and C.oculus-iridis,whereas optimal temperature and low salinity were responsible for Prorocentrum blooms in summer.The detailed description of seasonal variations in phytoplankton community structure in the three bays provide reference data for future studies on marine ecosystems and mariculture in adjacent areas.展开更多
Phytoplankton cell density, biomass, chl-α concentration and their seasonal fluctuations at five stations in the channel between Dongting Lake and the Changjiang (Yangtze) River were studied from May 1995 to Decemb...Phytoplankton cell density, biomass, chl-α concentration and their seasonal fluctuations at five stations in the channel between Dongting Lake and the Changjiang (Yangtze) River were studied from May 1995 to December 1997. The seasonal fluctuations had two peaks in a year in general. The annual patterns of total cell density and biomass indicated that diatoms contributed more than 70 percent of the total biomass (except from June to October) during the investigation period. Twenty-one dominant species contributed about 60--80 percent of the biomass in various months. The cell density, biomass and seasonal fluctuation were similar at Stations 1-4, but at Station 5 connected directly with the Changjiang River, the annual mean values (127.34×10^4cells/L and 0.46 mg/L in 1996, 41.98×10^4ceUs/L and 0.2 mg/L in 1997 respectively) were lower than those ( 195.92× 10^4 cells/L and 0.5 mg/L in 1996, 132.96 ×10^4 cells/L and 0.57 mg/L in 1997 respectively) at Station 1-4; and the curve of the seasonal fluctuation sometimes did not coincide with those at Stations 1-4. Based on criteria for evaluating trophic status, the dominant species, annual average cell density values of 114.86× 10^4-179.57× 10^4 cells/L, biomass of 0.48-0.5 mg/L, chl-αconcentration of 0.42-0.51 μg/L respectively recorded at five stations in 1996 and 1997, and values associated with the physico-chemical properties of the waterbody indicated that the water in the channel could be characterized as oligo-mesotrophic.展开更多
For estuaries,inland lakes play a vital role in the ecological balance under the impact of tide s.The effect of tides-induced water exchange on phytoplankton community in a semi-closed lake was studied and compared wi...For estuaries,inland lakes play a vital role in the ecological balance under the impact of tide s.The effect of tides-induced water exchange on phytoplankton community in a semi-closed lake was studied and compared with that of an adjacent closed lake in the Oujiang River mouth in Zhejiang,East China Sea,from June 29,2020 to June 14,2021.Results show that the dominant species,abundance,dominance,and diversity of the phytoplankton species between the two lakes were significantly different.In the closed lake,cyanobacteria were the dominant species during the study period.However.in the semi-closed lake,the diversification of the dominant species was greater,and some species of diatoms and green algae became dominant.The average phytoplankton abundance in the closed lake was 6 times of that in the semi-closed lake.The average dominance of cyanobacteria in the closed lake was 0.96,and those in the semi-closed lake and the Oujiang River were 0.51 and 0.22,respectively.Cyanobacterial blooms occurred throughout the study time in the closed lake but not in the semi-closed one.Furthermore,the species diversity richness of the phytoplankton in the semi-closed lake was higher than that of the closed one,and the phytoplankton community between the closed lake and semi-closed lake could be divided into distinctly different groups based on non-metic multidimensional scaling analysis(NMDS)and analysis of similarities(ANOSIM)analysis.The salinity of the water was significantly greater and the transparency significantly smaller in the semi-closed lake than those in the closed lake.Therefore,water exchange driven by local tidal movement increased salinity and decreased transparency of water,which consequently shaped the community structures of different phytoplankton and reduced the risk of a cyanobacterial bloom outbreak in the semi-closed lake.展开更多
基金The Project of Monitoring and Protection of Ecosystem in the East Pacific Ocean Sponsored by COMRA under contract No.DY135-E2-5-03the National Natural Science Foundation of China under contract Nos 41506217 and 41506136the Project of Ministry of Science and Technology under contract No.GASI-01-02-04。
文摘The Clarion-Clipperton Zone(CCZ)hosts one of the largest known oceanic nodule fields worldwide and is regulated by the International Seabed Authority.A baseline assessment of diversity and distribution patterns is essential for reliable predictions of disturbed ecosystem response scenarios for sustained commercial activities in the future.In the present study,the spatial patterns and diversity of phytoplankton communities were analyzed along with upper ocean biogeochemistry,in the licensed China Ocean Mineral Resources R&D Association(COMRA)contract area and the surrounding western CCZ between August 21 and October 8,2017.Results indicated this was a typical low-nutrient low-chlorophyll a(Chl a)environment,characterized by low levels of phytoplankton abundance and diversity.In total 112 species belonging to 4 phyla were recorded(>10μm),with species counts including 82 diatoms,27 dinoflagellates,1 cyanobacteria and 2 chrysophyte.Dominant taxa in successive order of descending abundance and occurrence included Nizschia marina,Cyclotella stylorum,Dactyliosolen mediterraneus,Rhizosolenia setigera,Pseudo-nitzschia delicatissima,Thalassiothrix frauenfeldii,Synedra sp.,Chaetoceros simplex and Pseudo-nitzschia circumpora.The depth-averaged abundance and Chl a concentrations were(265±233)cells/L and(0.27±0.30)μg/L,respectively.Diatoms accounted for 90.94%of the community with(241±223)cells/L,while dinoflagellates accounted for 5.67%and(15±13)cells/L.The distribution pattern exhibited the same trend as abundance,Chl a and species richness,showing subsurface maximum levels at around 100 m,with stations near 10°N having higher levels than in the north.Cluster analysis was performed in two assemblages,relating to geographic locations to the south and north of 12°N.The subsurface maximum of abundance,Chl a,species richness,dissolved oxygen and nitrite were generally corresponding to the presence of high salinity North Pacific Central Water at depths of 50-120 m.Higher availability of nitrate,phosphate and silicic acid in the subsurface may account for the shift in phytoplankton distribution,as shown by redundancy correspondence and spearman correlation analysis.Diel variation in an anchor station demonstrated prominent species succession without significant differences in oceanographic variables,among which diatoms succession resulted from the light limitation,while dinoflagellate diel variation mainly related to lateral transport of water masses.The observed patchiness in spatial phytoplankton distributional patterns was attributed to upper ocean environmental gradients in the CCZ.The baseline generated in this study could be analyzed using current conservation strategy programs associated with deep-sea mining.
基金Supported by the National Natural Science Foundation of China(No.31123001)the National Basic Research Program of China(973 Program)(No.2008CB418000)
文摘An annual investigation on phytoplankton communities was conducted to reveal the effects of nutrients on phytoplankton assemblages in Lake Taihu,East China. A total of 78 phytoplankton taxa were identified. Phytoplankton biomass was higher in the northern part of the lake than in the southern part. Cyanobacteria and Bacillariophyta alternated dominance in the northern area,where algal blooms often appear,and co-dominated in the southern area. In the northern part,the proportions of cyanobacteria and Bacillariophyta varied significantly in total biovolume,both along the phosphorus(P) gradient,and between total nitrogen levels(≤3 mg/L and >3 mg/L TN). The proportions of cyanobacteria and Bacillariophyta had no signif icant variations in total biovolume along P and N(nitrogen) gradients in the southern part. Correlation analysis and CCA results revealed that P was the key factor regulating phytoplankton community structure. Nitrogen was also important for the phytoplankton distribution pattern. It was concluded that nutrient structure was heterogeneous in space and shaped the distribution pattern of phytoplankton in the lake. Both exogenous P and internally sourced Prelease needs to be considered. N reduction should be considered simultaneously with P control to efficiently reduce eutrophication and algal blooms.
基金The National Natural Science Foundation of China under contract No.42206161the Natural Science Foundation of Hebei Province under contract No.D2022407004+1 种基金the Science Research Project of Hebei Education Department under contract No.QN2022167the Open Fund Project of Hebei Key Laboratory of Ocean Dynamics,Resources and Environments under contract No.HBHY04.
文摘Understanding the dynamics of phytoplankton communities in coastal zones is crucial for the management and conservation of coastal ecosystems.Previous research indicated that the phytoplankton community structure and dominant taxa in the Bohai Sea(BHS)have exhibited significant shifts from the 1990s to the early 2010s in response to environmental changes,especially the change in nutrient structure.This study comprehensively investigated the variations in net-collected phytoplankton(>76μm)community structure,diversity,and environmental factors in the BHS during the late summers of 2011-2020,aiming to understand the recent trend in phytoplankton community structure and to explore the interactions between the communities and the environment.During the study period,the nutrient status in the BHS was characterized by a decrease in dissolved inorganic nitrogen(DIN)concentration,an increase in dissolved inorganic phosphorus(DIP)concentration,and a return of the nitrogen-to-phosphorus(N/P)molar ratio(hereinafter referred to as N/P ratio)to the Redfield ratio since 2016.The eutrophication index(EI)in the BHS remained stable and was generally at a low level(<1).The Dia/Dino index fluctuated but did not show an obvious trend.Overall,the eutrophication,the imbalance in nutrient ratio,and the shift in phytoplankton community structure did not continue during the study period.The increased abundance of phytoplankton was strongly associated with elevated concentrations of DIN,as well as higher N/P and nitrogen-to-silicon(N/Si)ratios,whereas the greater diversity was strongly linked to higher concentrations of DIP.Diatoms and dinoflagellates showed significant differences in their interactions with the environment,and their relative dominance was related to water column depth and stratification intensity;their impacts on the phytoplankton community diversity were also significantly different.The variations of certain dominant species,i.e.,Skeletonema costatum,Paralia sulcata,and Tripos longipes,exhibited strong links to the changes in nutrient structure in the BHS.The findings of this study contribute to understanding the regional environmental changes and provide insights into the adaptive strategies of coastal ecosystems in response to environmental shifts and fluctuations.
基金Ecological Restoration Cost Evaluation in Archipelago Ecosystems:A Case Study in Putuo,Zhoushan Archipelago,East China Sea.
文摘Understanding the relative roles of local environmental effects and spatial effects on phytoplankton community is of essential importance to study the biogeography of them at regional scale. However, the determinants that driving the biogeography of phytoplankton communities in the coastal area of northern Zhejiang still remained unclear. We surveyed phytoplankton community compositions in water columns associated with environmental and spatial influences across five subzones that geographically covering this region over four seasons. Diatoms and dinoflagellates were recorded as the main dominant groups and Coscinodiscus oculs-iridis, Coscinodiscus jonesianus, and Skeletonema costatum, were identified as the major abundant species existing in all seasons.Spatially structured environmental conditions, rather than pure spatial or environmental factors, substantially shaped the biogeography of phytoplankton community, with the former mainly comprised of water temperature,dissolved oxygen, phosphate, pH, and salinity, and the latter referring to a non-negligible factor. This study was the first integrated research that combining environmental filtering with spatial factors in structuring phytoplankton communities at a complete tempo-spatial scale. Our results may facilitate to the further study of harmful algal blooms early-warning in this region.
基金Supported by the National Natural Science Foundation of China(No.31770223)the Excellent Achievement Cultivation Project of Higher Education in Shanxi(No.2020KJ029)the Scientifi c and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2019L0778)。
文摘Microorganisms play a key role in aquatic ecosystems.Recent studies show that keystone taxa in microbial community could change the community structure and function.However,most previous studies focus on abundant taxa but neglected low abundant ones.To clarify the seasonal variation of bacterial and microalgal communities and understand their synergistic adaptation to diff erent environmental factors,we studied the bacterial and eukaryotic phytoplankton communities in Fenhe River that runs through Taiyuan City,central China,and their seasonal co-occurrence patterns using 16S and 18S rDNA sequencing.Results indicate that positive interaction of eukaryotic phytoplankton network was more active than negative one except winter,indicating that the cooperation(symbiotic phenomenon in which phytoplankton are interdependent and mutually benefi cial)among them could improve the adaption of microbial community to the local environmental changes and maintain the stability of microbial network.The main genera that identifi ed as keystone taxa in bacterial network were Salinivibrio and Sphingopyxis of Proteobacteria and they could respond to the variation of nitrite and make use of it,while those that identifi ed as keystone taxa in eukaryotic phytoplankton network were Pseudoschroederia and Nannochloris,and they were more susceptible to nitrate and phosphate.Mychonastes and Cryptomonas were closely related to water temperature.However,the loss of the co-occurrence by environmental factor changes aff ected the stability of network structure.This study provided a reference for analyzing relationship between bacteria and eukaryotic phytoplankton and revealing potential importance of keystone taxa in similar ecological domains in carbon,nitrogen,and phosphorus dynamics.
基金Supported by the Fundamental Research Program of Shanxi Province(Nos.202103021223266,202203021211313,202303021211114,202303021222246)the Excellent Doctoral Research Project in Shanxi Province(No.QZX-2023005)the Shanxi Scientific and Technological Innovation Team of Halophiles Resources Utilization(No.202204051001035)。
文摘Water scarcity and pollution pose a threat to the sustainable development of cities and society.Therefore,it is crucial to analyze the hydrochemical characteristics and carbon dynamics of waterdeficient areas.Taking the Taiyuan section of Fenhe River as the research object,we systematically explored the hydrochemical characteristics of surface water and its evolutionary processes,as well as the ecological effect of algal carbonic anhydrase in carbon cycle using the hydrochemical evolution method and correlation analysis.The ternary diagram demonstrates that the main water chemical type in Fenhe River was SO^(2-)_(4)·Cl^(-)-Na^(+).The Gibbs and end-member diagrams of each ion display that the chemical composition of surface water was mainly controlled by silicate decomposition.The chemical ions originated mainly from dissolution of some minerals,such as plagioclase,halite,dolomite,calcite,and gypsum.The diatoms had a lower CO_(2)requirement because they exhibited a higher abundance at a lower partial pressure of CO_(2)(p CO_(2)).However,high CO_(2)concentration had a positive effect on cyanobacteria,which reduced the active transport of HCO_(3)^(-),saved the energy needed for this part of active transport,and indirectly improved the overall photosynthetic efficiency of algae.Carbonic anhydrase(CA)activity was significantly negatively correlated with p CO_(2)and positively correlated with HCO_(3)^(-)concentration,indicating that CA in water promoted the conversion of CO_(2)to HCO_(3)^(-).The HCO_(3)^(-)generated from this process continued to participate in the erosion of silicate rocks,sequestering CO_(2)in the form of Ca CO_(3),which has a non-negligible impact on the carbon sink in the Fenhe River.These consequences may have important implications for the biogeochemical cycling occurring in urban water.
基金the National Natural Science Foundation of China under contract No. 49576298, 497901001,and G1999043703.
文摘Phytoplankton species composition and species succession were determined in 1998-1999 based on 2 nestle investigation cruises in the Bohai Sea and two monthly monitoring stations at Penglai and Changdao for 15 months. The seasonal succession and pathway of phytoplankton community in the Bohai Sea were discussed complementarily with history data. The main process of Phytoplankton community development in the Bohai Sea was controlled by temperature and nutrient replenishes. There were two cell abundance peaks in an annual variation, the main peak in April and the secondary peak in September. In winter, the cell abundance was low due to the low temperature, the phytoplankton community was mainly made up of small-celled diataoms. In spring, the phytoplankton community was developed very quickly by small-celled diatom in suitable conditions of temperature and nutrients. In summer, the cell abundance decreased and big-celled diatoms became predominated. In autumn, because of the replenish of nutrient, big-celled diatoms and dinoflagellates formed another cell abundance peak. during the annual variation of phytoplankton community in the Bohai Sea, species succession was the main process of community development, the species sequence just occur at special areas and special periods. The evolution of phytoplankton community in the Bohai Sea accords with the hypothesis of Margalef's phytoplankton community of four stages. But the size feature is contrary to the hypothesis, which may be caused by nutrient replenish in autumn in Bohai Sea and the top to down control.
基金The Key Project of Chinese Academy of Sciences(No. KSCX1 SW 13).
文摘Phytoplankton assemblages in the subtrophical oligotrophic Lake Fuxian, the second deepest lake in China, were investigated monthly from September 2002 to August 2003. A total of 113 species belonging to seven phyla were identified, among them, a filamentous green alga, Mougeotia sp., dominated almost throughout the study period and comprised most of the total phytoplankton biomass. Mougeotia sp. has made a substantial development during the past decades: it was absent in 1957, only occasionally present in 1983, increased substantially in 1993, and became predominant in 2002—2003. It is likely that natural invasion of the Taihu Lake noodlefish(Neosalanx taihuensis) has led to a change of dominant herbivorous zooplankton from small to large calanoid, which has increased grazing pressure on small edible algae, and thus has indirectly favored the development of the inedible filamentous Mougeotia sp.
基金Supported by the Fundamental Research Funds for the Central Universities(No.DL11BA20)the GRAP09-Excellent Doctor Paper of Northeast Forestry Universitythe Science and Technology Project of Heilongjiang Province(No.GBQ9C103)
文摘The aim of this study was to determine the phytoplankton community structures of reservoirs of different trophic status, located in a cold region. Physical and chemical variables and the phytoplankton communities were investigated in two reservoirs (Xiquanyan Reservoir and Taoshan Reservoir) in Northeast China in 2009. The two reservoirs showed strong seasonal fluctuations in their physical and chemical composition. Results of the trophic status index indicated that Xiaquanyan Reservoir was mesotrophic, whilst Taoshan Reservoir was eutrophic. Diatoms were the dominant phytoplankton group in Xiquanyan Reservoir throughout all seasons of the study, while in Taoshan Reservoir, diatoms dominated in spring, and cyanobacteria dominated in summer and autumn. This difference was resulted from differences in local environmental factors, including nutrients and hydrology. This study suggests that in mesotrophic reservoirs, nutrients played a key role in controlling seasonal phytoplankton successions, whereas in eutrophic reservoirs water temperature was the key factor in a cold region. Notably, the dominant species in summer in the Taoshan Reservoir was Microcystis, which may produce toxins depending on the ambient conditions, and presenting a risk of local toxin contamination.
基金Supported by the National Natural Science Foundation of China for Creative Research Groups(No.40821004)the High Technology Research and Development Program of China(863 Program)(No.2008AA09Z107)the National Basic Research Program of China(973 Program)(No.2010CB428706)
文摘Both nitrate((NO_3)^-) and soluble reactive phosphate((PO_4)^(3-)) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s.Within the same period in the sea area,with surface salinity>30,(NO_3)^-concentration has shown an obvious increase,(PO_4)^(3-) has not changed greatly and dissolved reactive silica((SiO_3)^(2-)) has deceased dramatically.An examination of the elemental ratio of(NO_3)^-to(PO_4)^(3-) at the mouth of the Changjiang River did not show a systematic trend from the 1960s to 2000s largely because both nutrients increased simultaneously.In comparison,the elemental ratio of dissolved inorganic nitrogen(DIN) to(PO_4)^(3-) in surface seawater,with salinity>22,has shown a clearly increasing trend.Furthermore,an overall historical change of the(SiO_3)^(2-):(PO_4)^(3-) ratio has undergone a reverse trend in this area.Based on the changes of(SiO_3)^(2-):(PO_4)^(3-) and DIN:(PO_4)^(3-) ratios,we can conclude that an overall historical change of(SiO_3)^(2-):DIN ratio has decreased in this area from the 1950-1960s to 2000s.The argument that phytoplankton productivity in the Changjiang estuary has been enhanced by increasing nutrient input from the riverine transport was supported by these results.A comparative study analyzing the shift of phytoplankton composition from the mid-1980s to 2000s was also made.The results indicated that the average yearly percentage of diatom species in the Changjiang estuary has decreased from 84.6% during 1985-1986 to 69.8% during 2004-2005.Furthermore,the average yearly percentage of diatom abundance in the Changjiang estuary decreased from 99.5% during to 75.5% over the same time period,while the abundance of dinoflagellates has increased dramatically,from 0.7% to 25.4%.
基金The National Natural Science Foundation of China under contract Nos 41276198,41076135 and 41003036the Scientific Research Fund of Second Institute of Oceanography,SOA under contract Nos JG1323 and JG1023the Chinese Polar Environment Comprehensive Investiga-tion and Assessment Programs under contract Nos 20130403 and 20130304
文摘CHEMTAX analysis of high-performance liquid chromatography (HPLC) pigment was conducted to study phytoplankton community structure in the northern Bering Sea shelf, where a seasonal subsurface cold pool emerges. The results showed that fucoxanthin (Fuco) and chlorophyll a (Chl a) were the most abundant diagnostic pigments, with the integrated water column values ranging from 141 to 2160 μg/m2 and 477 to 5 535 μg/m2, respectively. Moreover, a diatom bloom was identified at Sta. BB06 with the standing stock of Fuco up to 9214 μg/m3. The results of CHEMTAX suggested that the phytoplankton community in the northern Bering Sea shelf was dominated by diatoms and chrysophytes with an average relative contribu- tion to Chl a of 80% and 12%, respectively, followed by chlorophytes, dinoflagellates, and cryptophytes. Dia- toms were the absolutely dominant algae in the subsurface cold pool with a relative contribution exceeding 90%, while the contribution of chrysophytes was generally higher in oligotrophic upper water. Additionally, the presence of a cold pool would tend to favor accumulation of diatom biomass and a bloom that occurred beneath the halocline would be beneficial to organic matter sinks, which suggests that a large part of the phytoplankton biomass would settle to the seabed and support a rich benthic biomass.
基金The National Basic Research Program of China(973 Program)under contract No.2010CB428901the National Natural Science Foundation of China under contract Nos 41020164005,40976042 and 41076036
文摘Phytoplankton productivity and community structure in marginal seas have been altered significantly during the past three decades, but it is still a challenge to distinguish the forcing mechanisms between climate change and anthropogenic activities. High time-resolution biomarker records of two 210Pb-dated sediment cores(#34: 28.5°N, 122.272°E; CJ12-1269: 28.861 9°N, 122.515 3°E) from the Min-Zhe coastal mud area were compared to reveal changes of phytoplankton productivity and community structure over the past 100 years. Phytoplankton productivity started to increase gradually from the 1970 s and increased rapidly after the late 1990 s at Site #34; and it started to increase gradually from the middle 1960 s and increased rapidly after the late 1980 s at Site CJ12-1269. Productivity of Core CJ12-1269 was higher than that of Core #34. Phytoplankton community structure variations displayed opposite patterns in the two cores. The decreasing D/B(dinosterol/brassicasterol) ratio of Core #34 since the 1960 s revealed increased diatom contribution to total productivity. In contrast, the increasing D/B ratio of Core CJ12-1269 since the 1950 s indicated increased dinoflagellate contribution to total productivity. Both the productivity increase and the increased dinoflagellate contribution in Core CJ12-1269 since the 1950–1960s were mainly caused by anthropogenic activities, as the location was closer to the Changjiang River Estuary with higher nutrient concentration and decreasing Si/N ratios. However, increased diatom contribution in Core #34 is proposed to be caused by increased coastal upwelling, with higher nutrient concentration and higher Si/N ratios.
基金Supported by the National Natural Science Foundation of China for Creative Research Groups by(National Natural Science Foundation of China)(No.40821004)the National Basic Research Program of China(973 Program)(No.2007CB407305)
文摘Systematic studies of the changes in dissolved inorganic nitrogen(DIN) and dissolved inorganic phosphorus(DIP) and their effects on phytoplankton over the last 30 years in the Bohai Sea are presented.The amount of sewage disposal,use of fertilizer and the Huanghe River runoff were found to have a significant influence on the DIN or DIP concentrations in the Bohai Sea over the last 30 years.Moreover,the changes in DIN and DIP resulted in changes in the limiting nutrients of phytoplankton in the Bohai Sea from nitrogen in the early 1980s to nitrogen-phosphorus in the late 1980s,and then to phosphorus after the 1990s.In addition,changes in nitrogen and phosphorus had a significant effect on the phytoplankton community structure.The half saturation constant(Ks) was used to evaluate the effect of nutrients on the phytoplankton community structure in the Bohai Sea over the last 30 years.Cell abundance percentages of dominant phytoplankton species with high Ks values for phosphorus and low Ks values for nitrogen have decreased since the 1980s,while those of dominant phytoplankton species with low Ks values for phosphorus and high Ks values for nitrogen increased during this period.
文摘The concentration and composition of nutrients,such as N,P,and Si,respond to biogeochemical processes and in turn,impact the phytoplanktons'community structure and primary production.In this study,historical data was systematically analyzed to identify long-term variations in nutrient trends,red tide frequency,phytoplankton community abundance,and dominant species succession in the southern Yellow Sea(SYS).Results showed that N/P concentration ratios dramatically increased as a function of increasing dissolved inorganic nitrogen concentrations,and Si/N concentration ratios were generally larger than 1,indicating that N limitation morphed to P limitation and potentially to Si limitation,which impacted the phytoplankton community.Furthermore,inter-annual trends over the past 50 years show that phytoplankton community abundance has been higher in spring and summer,relative to autumn and winter.Moreover,with respect to red tide frequency,diatom abundance gradually decreased,while that of dinoflagellates gradually increased.Dominant species succession showed that the phytoplankton community exhibited an evident tendency to transform from diatoms to dinoflagellates.These research results clearly depict the presence of an important correlation between the phytoplankton community and nutrient structure in the SYS.
基金Supported by the National Natural Science Foundation of China(No.411063005)the National Basic Research Program of China(973 Program)(No.2012CB426506)the Science and Technology Committee of Guizhou Foundation(Nos.[2011]7028,[2012]7021)
文摘Phytoplankton and environmental variables were measured monthly from July 2009 to August 2011 in the Maixi River from the estuary to Baihua Reservoir in the Maotiao River catchment, southwestern China, to understand phytoplankton community structure and environmental factors. The relationship between phytoplankton community structure and environmental factors including hydrological, meteorological, physical, and chemical variables were explored using multivariate analysis. A total of 81 taxa of phytoplankton were identified, which were mainly composed of chlorophyta, bacillariophyta, and cyanobacteria. The phytoplankton community was dominated by Pseudanabaena limnetica during summer and fall and by Cyclotella meneghiniana during winter and spring. The abundance of phytoplankton ranged from 0.24~ 104 cells/L to 33.45x 106 cells/L, with the minimum occurring during February 2010 and the maximum during July 2009. The phytoplankton community was dominated mainly by cyanobacteria from April to September, and by bacillariophyta and pyrrophyta from October to March. Canonical correspondence analysis showed that temperature, pH values, and orthophosphate were the most important driving factors regulating the composition and dynamics of the phytoplankton community in the estuary. Cyanobacteria and euglenophyta abundance and biomass were affected mainly by temperature and pH values, while most chlorophyta and bacillariophyta were influenced by the concentrations of nutrients.
基金The National Natural Science Foundation of China under contract Nos 41276198,41506222 and 41406217Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract Nos Chinare-03-04 and Chinare-04-03+2 种基金Chinese Polar Science Strategy Research Foundation under contract No.20120104the Sino-German Joint Project of"Natural variability of Arctic sea ice and its significance for global climate change and organic carbon cycle"the Foundation from the China Scholarship Council under contract No.201404180012
文摘Nutrients and photosynthesis pigments were investigated in the western Arctic Ocean during the 3rd Chinese Arctic Research Expedition Cruise in summer 2008. The study area was divided into five provinces using the K- means clustering method based on the physical and chemical characteristics of the sea water, and to discuss the distribution of the phytoplankton community structure in these provinces. CHEMTAX software was performed using HPLC pigments to estimate the contributions of eight algal classes to the total chlorophyll a (TChl a). The results showed that on the Chukchi Shelf, the Pacific Ocean inflow mainly controlled the Chl a biomass and phytoplankton communities by nutrient concentrations. The high nutrient Anadyr Water and Bering Shelf Water (AnW and BSW) controlled region have high Chl a levels and the diatom dominated community structure. In contrast, in the region occupied by low-nutrient like Alaska Coastal Water (ACW), the Chl a biomass was low, with pico- and nano-phytoplankton as dominated species, such as prasinophytes, chrysophytes and cryptophytes. However, over the off-shelf, the ice cover condition which would affect the physical and nutrient concentrations of the water masses, in consequence had a greater impact on the phytoplankton community structure. Diatom dominated in ice cover region and its contribution to Chl a biomass was up to 75%. In the region dose to the Mendeleev Abyssal Plain (MAP), controlled by sea-ice melt water with relatively high salinity (MW-HS), higher nutrient and Chl a concentrations were found and the phytoplankton was dominated by pico- and nano-algae, while the diatom abundance reduced to 33%. In the southern Canada Basin, an ice-free basin (IfB) with the lowest nutrient concentrations and most freshened surface water, low Chl a biomass was a consequence of low nutrients. The ice retreating and a prolonged period of open ocean may not be beneficial to the carbon export efficiency due to reducing the Chl a biomass or intriguing smaller size algae growth.
基金supported by the Ministry of Science and Technology of P.R.China under grant contracts (No.2010CB428903)the National Natural Science Foundation of China (No.41306112)+3 种基金the National Marine Public Welfare Research Project of China (Nos.201305043,200805069)the Zhejiang Provincial Natural Science Foundation (Nos.LY13D060004,Y5110131)the Marine Science Foundation of State Oceanic Administration for Youth (Nos.2013140,2013144)the Basic Scientific Research Fund of SIO,China (Nos.JG1311,JG1221)
文摘With the rapid development of economy and increase of population in the drainage areas, the nutrient loading has increased dramatically in the Changjiang estuary and adjacent coastal waters. To properly assess the impact of nutrient enrichment on phytoplankton community, seasonal microcosm experiments were conducted during August 2010-July 2011 in the coastal waters of Zhejiang Province. The results of the present study indicated that the chl a concentration, cell abundance, diversity indices, species composition and community succession of the phytoplankton varied significantly with different N/P ratios and seasons. Higher growth was observed in the 64:1 (spring), 32:1 (summer), 16:1 (autumn) and 128:1,256:1 (winter) treatments, respectively. The values of Shannon-Wiener index (H) and Pielou evenness index (J) were lower in the 8:1 and 16:1 treatments in autumn test, while H value was higher in the 128:1 and 8:1 treatments in winter test. A definite community succession order from diatoms to dinoflagel lares was observed in the autumn and winter tests, while the diatoms dominated the community throughout the culture in the spring and summer tests.
基金supported by the National Program on Key Basic Research Project of China (Grant Nos. 2011CB409804 and 2015CB954002)Program for New Century Excellent Talents in University (NCET-12-1065)the National Natural Science Foundation of China (Grant No.41176136) to J. Sun
文摘The seasonal variations in phytoplankton community structure were investigated for the Sanggou Bay (SGB) and the adjacent Ailian Bay (ALB) and Lidao Bay (LDB) in Shandong Peninsula,eastern China.The species composition and cell abundance of phytoplankton in the bay waters in spring (April 2011),summer (August 2011),autumn (October 2011),and winter (January 2012) were examined using the Uterm6hl method.A total of 80 taxa of phytoplankton that belong to 39 genera of 3 phyla were identified.These included 64 species of 30 genera in the Phylum Bacillariophyta,13 species of 8 genera in the Phylum Dinophyta,and 3 species of 1 genus in the Phylum Chrysophyta.During the four seasons,the number of phytoplankton species (43) was the highest in spring,followed by summer and autumn (40),and the lowest number ofphytoplankton species (35) was found in winter.Diatoms,especially Paralia sulcata (Ehrenberg) Cleve and Coscinodiscus oculus-iridis Ehrenberg,were predominant in the phytoplankton community throughout the study period,whereas the dominance of dinoflagellate appeared in summer only.The maximum cell abundance of phytoplankton was detected in summer (average 8.08 × 103 cells L-1) whereas their minimum abundance was found in autumn (average 2.60 x 103 cellsL-1).The phytoplankton abundance was generally higher in the outer bay than in the inner bay in spring and autumn.In summer,the phytoplankton cells were mainly concentrated in the south of inner SGB,with peak abundance observed along the western coast.In winter,the distribution of phytoplankton cells showed 3 patches,with peak abundance along the western coast as well.On seasonal average,the Shannon-Wiener diversity indices of phytoplankton community ranged from 1.17 to 1.78 (autumn 〉 summer 〉 spring 〉 winter),and the Pielou's evenness indices of phytoplankton ranged from 0.45 to 0.65 (autumn 〉 spring 〉 summer〉 winter).According to the results of canonical correspondence analysis,phosphate level was the major factor that limited the occurrence of P.sulcata and C.oculus-iridis,whereas optimal temperature and low salinity were responsible for Prorocentrum blooms in summer.The detailed description of seasonal variations in phytoplankton community structure in the three bays provide reference data for future studies on marine ecosystems and mariculture in adjacent areas.
基金Project 39670155 and 39430101 supported by NSFC.
文摘Phytoplankton cell density, biomass, chl-α concentration and their seasonal fluctuations at five stations in the channel between Dongting Lake and the Changjiang (Yangtze) River were studied from May 1995 to December 1997. The seasonal fluctuations had two peaks in a year in general. The annual patterns of total cell density and biomass indicated that diatoms contributed more than 70 percent of the total biomass (except from June to October) during the investigation period. Twenty-one dominant species contributed about 60--80 percent of the biomass in various months. The cell density, biomass and seasonal fluctuation were similar at Stations 1-4, but at Station 5 connected directly with the Changjiang River, the annual mean values (127.34×10^4cells/L and 0.46 mg/L in 1996, 41.98×10^4ceUs/L and 0.2 mg/L in 1997 respectively) were lower than those ( 195.92× 10^4 cells/L and 0.5 mg/L in 1996, 132.96 ×10^4 cells/L and 0.57 mg/L in 1997 respectively) at Station 1-4; and the curve of the seasonal fluctuation sometimes did not coincide with those at Stations 1-4. Based on criteria for evaluating trophic status, the dominant species, annual average cell density values of 114.86× 10^4-179.57× 10^4 cells/L, biomass of 0.48-0.5 mg/L, chl-αconcentration of 0.42-0.51 μg/L respectively recorded at five stations in 1996 and 1997, and values associated with the physico-chemical properties of the waterbody indicated that the water in the channel could be characterized as oligo-mesotrophic.
基金Supported by the National Key R&D Program of China(No.2018YFE0103700)the National Natural Science Foundation(Nos.41876124,61871293,42007372)the Zhejiang Provincial Natural Science Foundation of China(Nos.LZ21C030001,LD21C030001,LQ20C030008)。
文摘For estuaries,inland lakes play a vital role in the ecological balance under the impact of tide s.The effect of tides-induced water exchange on phytoplankton community in a semi-closed lake was studied and compared with that of an adjacent closed lake in the Oujiang River mouth in Zhejiang,East China Sea,from June 29,2020 to June 14,2021.Results show that the dominant species,abundance,dominance,and diversity of the phytoplankton species between the two lakes were significantly different.In the closed lake,cyanobacteria were the dominant species during the study period.However.in the semi-closed lake,the diversification of the dominant species was greater,and some species of diatoms and green algae became dominant.The average phytoplankton abundance in the closed lake was 6 times of that in the semi-closed lake.The average dominance of cyanobacteria in the closed lake was 0.96,and those in the semi-closed lake and the Oujiang River were 0.51 and 0.22,respectively.Cyanobacterial blooms occurred throughout the study time in the closed lake but not in the semi-closed one.Furthermore,the species diversity richness of the phytoplankton in the semi-closed lake was higher than that of the closed one,and the phytoplankton community between the closed lake and semi-closed lake could be divided into distinctly different groups based on non-metic multidimensional scaling analysis(NMDS)and analysis of similarities(ANOSIM)analysis.The salinity of the water was significantly greater and the transparency significantly smaller in the semi-closed lake than those in the closed lake.Therefore,water exchange driven by local tidal movement increased salinity and decreased transparency of water,which consequently shaped the community structures of different phytoplankton and reduced the risk of a cyanobacterial bloom outbreak in the semi-closed lake.