使用通过型固相萃取小柱PRi ME HLB处理水产品样品,建立了一种水产品中17种磺胺类药物的简单、快速的筛选分析方法。水产品样品经80%乙腈水溶液(含0.2%甲酸)提取,过PRi ME HLB固相萃取柱净化,浓缩后经C_(18)色谱柱梯度洗脱分离,超高效...使用通过型固相萃取小柱PRi ME HLB处理水产品样品,建立了一种水产品中17种磺胺类药物的简单、快速的筛选分析方法。水产品样品经80%乙腈水溶液(含0.2%甲酸)提取,过PRi ME HLB固相萃取柱净化,浓缩后经C_(18)色谱柱梯度洗脱分离,超高效液相色谱-三重四极杆质谱系统进行定量分析。结果表明,17种磺胺类药物在1.0~50.0 ng·mL^(-1)线性关系良好,相关系数R^(2)>0.99;该方法检出限为2μg·kg^(-1);添加浓度为10μg·kg^(-1)时方法回收率在71.3%~118.4%,RSD值均小于20%。展开更多
We have found through calculations that the differences between the closest supposed prime numbers other than 2 and 3 defined in the articles are: 2;4: and 6. For those whose difference is equal to 6, we showed their ...We have found through calculations that the differences between the closest supposed prime numbers other than 2 and 3 defined in the articles are: 2;4: and 6. For those whose difference is equal to 6, we showed their origin then we classified them into two categories according to their classes, we showed in which context two prime numbers which differ from 6 are called sexy and in what context they are said real sexy prime. For those whose difference is equal to 4, we showed their origin then we showed that two prime numbers which differ from 4, that is to say two cousin prime numbers, are successive. We made an observation on the supposed prime numbers then we established two pairs of equations from this observation and deduced the origin of the Mersenne number and that of the Fermat number.展开更多
Are all prime numbers linked by four simple functions? Can we predict when a prime will appear in a sequence of primes? If we classify primes into two groups, Group 1 for all primes that appear before ζ (such that , ...Are all prime numbers linked by four simple functions? Can we predict when a prime will appear in a sequence of primes? If we classify primes into two groups, Group 1 for all primes that appear before ζ (such that , for instance 5, ), an even number divisible by 3 and 2, and Group 2 for all primes that are after ζ (such that , for instance 7), then we find a simple function: for each prime in each group, , where n is any natural number. If we start a sequence of primes with 5 for Group 1 and 7 for Group 2, we can attribute a μ value for each prime. The μ value can be attributed to every prime greater than 7. Thus for Group 1, and . Using this formula, all the primes appear for , where μ is any natural number.展开更多
The application of the Euclidean division theorem for the positive integers allowed us to establish a set which contains all the prime numbers and this set we called it set of supposedly prime numbers and we noted it ...The application of the Euclidean division theorem for the positive integers allowed us to establish a set which contains all the prime numbers and this set we called it set of supposedly prime numbers and we noted it E<sub>sp</sub>. We subsequently established from the previous set the set of non-prime numbers (the set of numbers belonging to this set and which are not prime) denoted E<sub>np</sub>. We then extracted from the set of supposedly prime numbers the numbers which are not prime and the set of remaining number constitutes the set of prime numbers denoted E<sub>p</sub>. We have deduced from the previous set, the set of prime numbers between two natural numbers. We have explained during our demonstrations the origin of the twin prime numbers and the structure of the chain of prime numbers.展开更多
Over millennia, nobody has been able to predict where prime numbers sprout or how they spread. This study establishes the Periodic Table of Primes (PTP) using four prime numbers 2, 3, 5, and 7. We identify 48 integers...Over millennia, nobody has been able to predict where prime numbers sprout or how they spread. This study establishes the Periodic Table of Primes (PTP) using four prime numbers 2, 3, 5, and 7. We identify 48 integers out of a period 2×3×5×7=210 to be the roots of all primes as well as composites without factors of 2, 3, 5, and 7. Each prime, twin primes, or composite without factors of 2, 3, 5, and 7 is an offspring of the 48 integers uniquely allocated on the PTP. Three major establishments made in the article are the Formula of Primes, the Periodic Table of Primes, and the Counting Functions of Primes and Twin Primes.展开更多
An elementary formula to know the number of primes in the interval (x, 2x) close to the exact figure for a fixed x is given here. A new elementary equation is derived (a relation between prime numbers and composite nu...An elementary formula to know the number of primes in the interval (x, 2x) close to the exact figure for a fixed x is given here. A new elementary equation is derived (a relation between prime numbers and composite numbers distributed in the interval [1, 2x]). An elementary method to know the number of primes in a given magnitude is suitably placed in the form of a general formula, and we have proved it. The general formula is applied to the terms of the equation, and a tactical simplification of the terms gives rise to an expression whose verification envisages scope for its further studies.展开更多
The Riemann hypothesis is intimately connected to the counting functions for the primes. In particular, Perron’s explicit formula relates the prime counting function to fixed points of iterations of the explicit form...The Riemann hypothesis is intimately connected to the counting functions for the primes. In particular, Perron’s explicit formula relates the prime counting function to fixed points of iterations of the explicit formula with particular relations involving the trivial and non-trivial roots of the Riemann Zeta function and the Primes. The aim of the paper is to demonstrate this relation at the fixed points of iterations of explicit formula, defined by functions of the form limT∈Ν→∞fT(zw)=zw,where, zwis a real number.展开更多
This work presents a different approach to twin primes, an approach from the perspective of the Tesla numbers and gives a refresh and new observation of twin primes that could lead us to an answer to the Twin Prime Co...This work presents a different approach to twin primes, an approach from the perspective of the Tesla numbers and gives a refresh and new observation of twin primes that could lead us to an answer to the Twin Prime Conjecture problem. We expose a peculiar relation between twin primes and the generation of prime numbers with Tesla numbers. Tesla numbers seem to be present in so many domains like time, vibration and frequency [1], and the space between twin primes is not the exception. Let us say that twin primes are more than just prime numbers plus 2 or minus 2, and Tesla numbers are more involved with twin primes than we think, and hopefully, this approach give us a better understanding of the distribution of the twin pairs.展开更多
The China Fashion Week A/W 2024,hosted by the China Fashion Designers Association,took place in Beijing from March 23 to 31.Themed“Fu”(Empower),this season’s fashion week continued to focus on Chinese aesthetics,in...The China Fashion Week A/W 2024,hosted by the China Fashion Designers Association,took place in Beijing from March 23 to 31.Themed“Fu”(Empower),this season’s fashion week continued to focus on Chinese aesthetics,innovation in intangible cultural heritage,fusion of Chinese trends.展开更多
The Fine Structure Constant (eFSC) Model attempts to give a classical definition to a magical number that underlies much of quantum physics. The Fine Structure Constant (α) value equal to 137.03599206 represents a di...The Fine Structure Constant (eFSC) Model attempts to give a classical definition to a magical number that underlies much of quantum physics. The Fine Structure Constant (α) value equal to 137.03599206 represents a dimensionless constant that characterizes the strength of the electromagnetic (EM) interaction between subatomic charged particles. Python-generated property counts for the twin prime force F{139/137} show that the adjusted ratio gives a value of α = 137.036. This implies a mathematical framework underlying this constant is based on twin prime numbers and set theory. This study attempts to demonstrate a proof of concept that a hierarchy of fractional twin prime (αII) forces replicates the quantum nature of the universe and is aligned with the Standard Model of Particle Physics. An expanded eFSC Model demonstrates that twin prime forces and their property sets are mathematically viable substitutes for nuclear reactions, as demonstrated for the Beta-minus decay of neutrons into protons. Most significantly, the positive and negative prime numbers define these nuclear reactants and products as positive or negatively charged ions. Furthermore, the eFSC Model provides new insights regarding the hierarchy of EM forces underlying the quantum nature of the universe.展开更多
This study aims to demonstrate a proof of concept for a novel theory of the universe based on the Fine Structure Constant (α), derived from n-dimensional prime number property sets, specifically α = 137 and α = 139...This study aims to demonstrate a proof of concept for a novel theory of the universe based on the Fine Structure Constant (α), derived from n-dimensional prime number property sets, specifically α = 137 and α = 139. The FSC Model introduces a new perspective on the fundamental nature of our universe, showing that α = 137.036 can be calculated from these prime property sets. The Fine Structure Constant, a cornerstone in Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD), implies an underlying structure. This study identifies this mathematical framework and demonstrates how the FSC model theory aligns with our current understanding of physics and cosmology. The results unveil a hierarchy of α values for twin prime pairs U{3/2} through U{199/197}. These values, represented by their fraction parts α♊ (e.g., 0.036), define the relative electromagnetic forces driving quantum energy systems. The lower twin prime pairs, such as U{3/2}, exhibit higher EM forces that decrease as the twin pairs increase, turning dark when they drop below the α♊ for light. The results provide classical definitions for Baryonic Matter/Energy, Dark Matter, Dark Energy, and Antimatter but mostly illustrate how the combined α♊ values for three adjacent twin primes, U{7/5/3/2} mirrors the strong nuclear force of gluons holding quarks together.展开更多
文摘使用通过型固相萃取小柱PRi ME HLB处理水产品样品,建立了一种水产品中17种磺胺类药物的简单、快速的筛选分析方法。水产品样品经80%乙腈水溶液(含0.2%甲酸)提取,过PRi ME HLB固相萃取柱净化,浓缩后经C_(18)色谱柱梯度洗脱分离,超高效液相色谱-三重四极杆质谱系统进行定量分析。结果表明,17种磺胺类药物在1.0~50.0 ng·mL^(-1)线性关系良好,相关系数R^(2)>0.99;该方法检出限为2μg·kg^(-1);添加浓度为10μg·kg^(-1)时方法回收率在71.3%~118.4%,RSD值均小于20%。
文摘We have found through calculations that the differences between the closest supposed prime numbers other than 2 and 3 defined in the articles are: 2;4: and 6. For those whose difference is equal to 6, we showed their origin then we classified them into two categories according to their classes, we showed in which context two prime numbers which differ from 6 are called sexy and in what context they are said real sexy prime. For those whose difference is equal to 4, we showed their origin then we showed that two prime numbers which differ from 4, that is to say two cousin prime numbers, are successive. We made an observation on the supposed prime numbers then we established two pairs of equations from this observation and deduced the origin of the Mersenne number and that of the Fermat number.
文摘Are all prime numbers linked by four simple functions? Can we predict when a prime will appear in a sequence of primes? If we classify primes into two groups, Group 1 for all primes that appear before ζ (such that , for instance 5, ), an even number divisible by 3 and 2, and Group 2 for all primes that are after ζ (such that , for instance 7), then we find a simple function: for each prime in each group, , where n is any natural number. If we start a sequence of primes with 5 for Group 1 and 7 for Group 2, we can attribute a μ value for each prime. The μ value can be attributed to every prime greater than 7. Thus for Group 1, and . Using this formula, all the primes appear for , where μ is any natural number.
文摘The application of the Euclidean division theorem for the positive integers allowed us to establish a set which contains all the prime numbers and this set we called it set of supposedly prime numbers and we noted it E<sub>sp</sub>. We subsequently established from the previous set the set of non-prime numbers (the set of numbers belonging to this set and which are not prime) denoted E<sub>np</sub>. We then extracted from the set of supposedly prime numbers the numbers which are not prime and the set of remaining number constitutes the set of prime numbers denoted E<sub>p</sub>. We have deduced from the previous set, the set of prime numbers between two natural numbers. We have explained during our demonstrations the origin of the twin prime numbers and the structure of the chain of prime numbers.
文摘Over millennia, nobody has been able to predict where prime numbers sprout or how they spread. This study establishes the Periodic Table of Primes (PTP) using four prime numbers 2, 3, 5, and 7. We identify 48 integers out of a period 2×3×5×7=210 to be the roots of all primes as well as composites without factors of 2, 3, 5, and 7. Each prime, twin primes, or composite without factors of 2, 3, 5, and 7 is an offspring of the 48 integers uniquely allocated on the PTP. Three major establishments made in the article are the Formula of Primes, the Periodic Table of Primes, and the Counting Functions of Primes and Twin Primes.
文摘An elementary formula to know the number of primes in the interval (x, 2x) close to the exact figure for a fixed x is given here. A new elementary equation is derived (a relation between prime numbers and composite numbers distributed in the interval [1, 2x]). An elementary method to know the number of primes in a given magnitude is suitably placed in the form of a general formula, and we have proved it. The general formula is applied to the terms of the equation, and a tactical simplification of the terms gives rise to an expression whose verification envisages scope for its further studies.
文摘The Riemann hypothesis is intimately connected to the counting functions for the primes. In particular, Perron’s explicit formula relates the prime counting function to fixed points of iterations of the explicit formula with particular relations involving the trivial and non-trivial roots of the Riemann Zeta function and the Primes. The aim of the paper is to demonstrate this relation at the fixed points of iterations of explicit formula, defined by functions of the form limT∈Ν→∞fT(zw)=zw,where, zwis a real number.
文摘This work presents a different approach to twin primes, an approach from the perspective of the Tesla numbers and gives a refresh and new observation of twin primes that could lead us to an answer to the Twin Prime Conjecture problem. We expose a peculiar relation between twin primes and the generation of prime numbers with Tesla numbers. Tesla numbers seem to be present in so many domains like time, vibration and frequency [1], and the space between twin primes is not the exception. Let us say that twin primes are more than just prime numbers plus 2 or minus 2, and Tesla numbers are more involved with twin primes than we think, and hopefully, this approach give us a better understanding of the distribution of the twin pairs.
文摘The China Fashion Week A/W 2024,hosted by the China Fashion Designers Association,took place in Beijing from March 23 to 31.Themed“Fu”(Empower),this season’s fashion week continued to focus on Chinese aesthetics,innovation in intangible cultural heritage,fusion of Chinese trends.
文摘The Fine Structure Constant (eFSC) Model attempts to give a classical definition to a magical number that underlies much of quantum physics. The Fine Structure Constant (α) value equal to 137.03599206 represents a dimensionless constant that characterizes the strength of the electromagnetic (EM) interaction between subatomic charged particles. Python-generated property counts for the twin prime force F{139/137} show that the adjusted ratio gives a value of α = 137.036. This implies a mathematical framework underlying this constant is based on twin prime numbers and set theory. This study attempts to demonstrate a proof of concept that a hierarchy of fractional twin prime (αII) forces replicates the quantum nature of the universe and is aligned with the Standard Model of Particle Physics. An expanded eFSC Model demonstrates that twin prime forces and their property sets are mathematically viable substitutes for nuclear reactions, as demonstrated for the Beta-minus decay of neutrons into protons. Most significantly, the positive and negative prime numbers define these nuclear reactants and products as positive or negatively charged ions. Furthermore, the eFSC Model provides new insights regarding the hierarchy of EM forces underlying the quantum nature of the universe.
文摘This study aims to demonstrate a proof of concept for a novel theory of the universe based on the Fine Structure Constant (α), derived from n-dimensional prime number property sets, specifically α = 137 and α = 139. The FSC Model introduces a new perspective on the fundamental nature of our universe, showing that α = 137.036 can be calculated from these prime property sets. The Fine Structure Constant, a cornerstone in Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD), implies an underlying structure. This study identifies this mathematical framework and demonstrates how the FSC model theory aligns with our current understanding of physics and cosmology. The results unveil a hierarchy of α values for twin prime pairs U{3/2} through U{199/197}. These values, represented by their fraction parts α♊ (e.g., 0.036), define the relative electromagnetic forces driving quantum energy systems. The lower twin prime pairs, such as U{3/2}, exhibit higher EM forces that decrease as the twin pairs increase, turning dark when they drop below the α♊ for light. The results provide classical definitions for Baryonic Matter/Energy, Dark Matter, Dark Energy, and Antimatter but mostly illustrate how the combined α♊ values for three adjacent twin primes, U{7/5/3/2} mirrors the strong nuclear force of gluons holding quarks together.