Picea mongolica is an endemic and endangered species in China. Ecosystem made of Picea mongolica is a special sandy forest ecosystem in China. It is found at ecotone between forest and steppe, or agricultural district...Picea mongolica is an endemic and endangered species in China. Ecosystem made of Picea mongolica is a special sandy forest ecosystem in China. It is found at ecotone between forest and steppe, or agricultural district and pastoral area. Based on investigation, this paper discussed the formation and distribution of Picea mongolica and studied its nature according to ecotone theory. It is clarified that Picea mongolica belongs to Picea meyeri series. That is to say, it became a local race through long-term adaptation to the local climate, then formed allopatric semi-species, and finally turned into a taxonomical species. Picea mongolica forest is a super zonal climax community developing in ecotone between forest zone and steppe zone.展开更多
In sandy forest with a forest canopy gap for a period of over 30 years, the spruce(Picea mongolica) seedlings were monitored on two 5-m- wide transects from the center of a large gap into the surrounding forest. The...In sandy forest with a forest canopy gap for a period of over 30 years, the spruce(Picea mongolica) seedlings were monitored on two 5-m- wide transects from the center of a large gap into the surrounding forest. The farther they were to the far center, the taller grew the seedling and the more is the number of seedling. There were many seedlings under the canopy but almost all seedlings died before they grow up. Along the forest edge, growth of seedlings was temporarily enhanced by lateral penetration of light from the gap. The implications for natural forest regeneration dynamics are discussed. Our results prove that in P mongolica forest a gap disturbance creates a non-uniform environment for regeneration of the species, and determines that the forest was a non-even aged forest.展开更多
Picea mongolica is an endemic but endangered species in China. The spruce forest is only found in sandy forest-steppe ecotones. In this study, we examined the initial response of the quantity and refilling process of ...Picea mongolica is an endemic but endangered species in China. The spruce forest is only found in sandy forest-steppe ecotones. In this study, we examined the initial response of the quantity and refilling process of free roots in an artificial canopy gap with a diameter of 36 m in a P. mongolica forest. Under the canopy, the fine root length densities of trees, shrubs and herbs were 2,622, 864 and 3,086 m·m^- 2, respectively. The free root biomass of trees, shrubs and herbs were 148, 62 and 65 g·m^- 2, respectively. In the gap, the fine root length density of trees was 151 m·m^- 2. The mean fine root densities of shrubs and herbs in the gap were 756 and 2,568 m·m^- 2. The fine root biomass of trees, shrubs and herbs were 9, 52 and 47 g·m^- 2, respectively. Two growing seasons after the gap creation, hardly any fine tree roots were found in the middle of the gap. The living tree roots in the gap edge zone were mainly located within a 4.5 m distance from the standing trees. Indices developed to show the influence of trees on free root length density clearly revealed the effect of the vicinity of living trees on fine root length density. The root densities of shrubs and herbs did not show a clear response to gap creation despite the increase of their foliage. Our results suggest that in P mongolica forests a gap disturbance creates a distinct tree root gap and that the gap edge trees do not extend their root systems rapidly into the formed root gap.展开更多
Picea mongolica W. D. Xu is an endemic and endangered species which is only found in semi-arid areas of northern China. It has been widely used as an afforestation tree in the establishment of the Three-North Shelterb...Picea mongolica W. D. Xu is an endemic and endangered species which is only found in semi-arid areas of northern China. It has been widely used as an afforestation tree in the establishment of the Three-North Shelterbelt System for its adaptation to arid soils and as a virescent tree in urban gardens and streets for its beautiful shape. Due to different microenvironments, P. mongolica populations may differentiate into many ecological groups with different adaptive abilities. Long-term adaptation to a dry environment makes P. mongolica differentiate into different ecotypes. Typical ecotypes are P. mongolica f. purpurea (Fp), P. mongolica f. rubra (Fr) and P. mongolica f. viridis (Fv). Our results show that cone size is clearly not uniform among different ecotypes; the largest cones are found in the Fv ecotype and the smallest in Fp. There were also distinct differences between these ecotypes in terms of height and length of squama. At the molecular level, the zymograms of peroxidase and lipase prove the existence of different ecotypes in P. mongolica. The results are useful for investigating and managing this rare spruce species in China.展开更多
Picea mongolica W. D. Xu. is an endemic species in China. The spruce forest is only found in semi-arid habitat in Inner Mongolia Autonomous Region of China. Based on the simulative defoliation experiment, it was prove...Picea mongolica W. D. Xu. is an endemic species in China. The spruce forest is only found in semi-arid habitat in Inner Mongolia Autonomous Region of China. Based on the simulative defoliation experiment, it was proved that Picea mongolica seedlings had the compensatory and overcompensatory effects under the certain defoliation rate. The results of variance analysis on growth indexes showed that in PM Ⅰ(natural regeneration seedlings under Picea mongolica forest), the differences of H 1(height in June 23) and H 2(height in September 3) were extremely significant, and the difference of D(diameter at the breast height) were not significant. In PM Ⅱ(artificial regeneration seedlings under Betula platyphylla Suk. forest), the difference of H 1 was significant, the difference of H 2 was not significant, and the difference of D was extremely significant. The regression equations were established and the compensatory and overcompensatory points were obtained. In PM Ⅰ, the compensatory points of H 1, H 2, and D were 0.7628, 0.7436, 0.5725, and the overcompensatory points were 0.6056, 0.5802 and 0.2909 respectively. In PM Ⅱ, the compensatory points of H 1, H 2, and D are 0.5012, 0.3421, 0.2488, and the overcompensatory points are 0.4137, 0.2633 and 0.0747 respectively. These results suggested that the induction of compensatory growth mechanisms in spruce seedlings required a threshold level of defoliation, and the insects in Picea mongolica forest could be controlled in a certain degree.展开更多
Picea mongolica is a conifer with a limited distribution in China and its taxonomic status is controversial.In order to explore genetic diff erences between P.mongolica and other nearby Picea species and to investigat...Picea mongolica is a conifer with a limited distribution in China and its taxonomic status is controversial.In order to explore genetic diff erences between P.mongolica and other nearby Picea species and to investigate its taxonomic status,phylogenetic relationships were analyzed between P.mongolica and Picea koraiensis,Picea meyeri and Picea wilsonii by three chloroplast gene sequences matK,chlB and atpA.The length of joint chloroplast sequence is 2379 bp.The fi fteen haplotypes were identifi ed by haplotype network analysis,among which two were major haplotypes and nine were unique.In addition,the genetic diversity of the sample collection species was inferred.Based on the haplotype network and Neighbor Joining phylogenetic tree analysis,P.mongolica was located on the basal clade of the phylogenetic tree which had more primitive taxa,and the genetic diversity of P.mongolica was highest.The signifi cant diff erences between P.mongolica and these other Picea species were identifi ed by this research.展开更多
基金National Natural Science Foundation of China (39670133 39900019 30070129).
文摘Picea mongolica is an endemic and endangered species in China. Ecosystem made of Picea mongolica is a special sandy forest ecosystem in China. It is found at ecotone between forest and steppe, or agricultural district and pastoral area. Based on investigation, this paper discussed the formation and distribution of Picea mongolica and studied its nature according to ecotone theory. It is clarified that Picea mongolica belongs to Picea meyeri series. That is to say, it became a local race through long-term adaptation to the local climate, then formed allopatric semi-species, and finally turned into a taxonomical species. Picea mongolica forest is a super zonal climax community developing in ecotone between forest zone and steppe zone.
基金Foundation project: The National Natural Science Foundation of China (No. 39900019, 30070129)
文摘In sandy forest with a forest canopy gap for a period of over 30 years, the spruce(Picea mongolica) seedlings were monitored on two 5-m- wide transects from the center of a large gap into the surrounding forest. The farther they were to the far center, the taller grew the seedling and the more is the number of seedling. There were many seedlings under the canopy but almost all seedlings died before they grow up. Along the forest edge, growth of seedlings was temporarily enhanced by lateral penetration of light from the gap. The implications for natural forest regeneration dynamics are discussed. Our results prove that in P mongolica forest a gap disturbance creates a non-uniform environment for regeneration of the species, and determines that the forest was a non-even aged forest.
基金We thank Mr. Liu Guangtian and the staff of Baiyinaobao Nature Reserve. This study was funded by the National Natural Science Foundation of China (Grant Nos. 39900019 and 30070129). We thank Prof. Liao Liping for English corrections.
文摘Picea mongolica is an endemic but endangered species in China. The spruce forest is only found in sandy forest-steppe ecotones. In this study, we examined the initial response of the quantity and refilling process of free roots in an artificial canopy gap with a diameter of 36 m in a P. mongolica forest. Under the canopy, the fine root length densities of trees, shrubs and herbs were 2,622, 864 and 3,086 m·m^- 2, respectively. The free root biomass of trees, shrubs and herbs were 148, 62 and 65 g·m^- 2, respectively. In the gap, the fine root length density of trees was 151 m·m^- 2. The mean fine root densities of shrubs and herbs in the gap were 756 and 2,568 m·m^- 2. The fine root biomass of trees, shrubs and herbs were 9, 52 and 47 g·m^- 2, respectively. Two growing seasons after the gap creation, hardly any fine tree roots were found in the middle of the gap. The living tree roots in the gap edge zone were mainly located within a 4.5 m distance from the standing trees. Indices developed to show the influence of trees on free root length density clearly revealed the effect of the vicinity of living trees on fine root length density. The root densities of shrubs and herbs did not show a clear response to gap creation despite the increase of their foliage. Our results suggest that in P mongolica forests a gap disturbance creates a distinct tree root gap and that the gap edge trees do not extend their root systems rapidly into the formed root gap.
基金the financial support from the National Nature Science Foundation of China (NSFC) under Grant Nos. 39900019, 30070129 and 30670315the Global Environmental Research Fund of the Ministry of the Environment of Japan
文摘Picea mongolica W. D. Xu is an endemic and endangered species which is only found in semi-arid areas of northern China. It has been widely used as an afforestation tree in the establishment of the Three-North Shelterbelt System for its adaptation to arid soils and as a virescent tree in urban gardens and streets for its beautiful shape. Due to different microenvironments, P. mongolica populations may differentiate into many ecological groups with different adaptive abilities. Long-term adaptation to a dry environment makes P. mongolica differentiate into different ecotypes. Typical ecotypes are P. mongolica f. purpurea (Fp), P. mongolica f. rubra (Fr) and P. mongolica f. viridis (Fv). Our results show that cone size is clearly not uniform among different ecotypes; the largest cones are found in the Fv ecotype and the smallest in Fp. There were also distinct differences between these ecotypes in terms of height and length of squama. At the molecular level, the zymograms of peroxidase and lipase prove the existence of different ecotypes in P. mongolica. The results are useful for investigating and managing this rare spruce species in China.
文摘Picea mongolica W. D. Xu. is an endemic species in China. The spruce forest is only found in semi-arid habitat in Inner Mongolia Autonomous Region of China. Based on the simulative defoliation experiment, it was proved that Picea mongolica seedlings had the compensatory and overcompensatory effects under the certain defoliation rate. The results of variance analysis on growth indexes showed that in PM Ⅰ(natural regeneration seedlings under Picea mongolica forest), the differences of H 1(height in June 23) and H 2(height in September 3) were extremely significant, and the difference of D(diameter at the breast height) were not significant. In PM Ⅱ(artificial regeneration seedlings under Betula platyphylla Suk. forest), the difference of H 1 was significant, the difference of H 2 was not significant, and the difference of D was extremely significant. The regression equations were established and the compensatory and overcompensatory points were obtained. In PM Ⅰ, the compensatory points of H 1, H 2, and D were 0.7628, 0.7436, 0.5725, and the overcompensatory points were 0.6056, 0.5802 and 0.2909 respectively. In PM Ⅱ, the compensatory points of H 1, H 2, and D are 0.5012, 0.3421, 0.2488, and the overcompensatory points are 0.4137, 0.2633 and 0.0747 respectively. These results suggested that the induction of compensatory growth mechanisms in spruce seedlings required a threshold level of defoliation, and the insects in Picea mongolica forest could be controlled in a certain degree.
基金This work was supported by“the Fundamental Research Funds for the Central Universities(NO.2015ZCQ-SW-02)”and the National Natural Science Foundation of China(31870651).
文摘Picea mongolica is a conifer with a limited distribution in China and its taxonomic status is controversial.In order to explore genetic diff erences between P.mongolica and other nearby Picea species and to investigate its taxonomic status,phylogenetic relationships were analyzed between P.mongolica and Picea koraiensis,Picea meyeri and Picea wilsonii by three chloroplast gene sequences matK,chlB and atpA.The length of joint chloroplast sequence is 2379 bp.The fi fteen haplotypes were identifi ed by haplotype network analysis,among which two were major haplotypes and nine were unique.In addition,the genetic diversity of the sample collection species was inferred.Based on the haplotype network and Neighbor Joining phylogenetic tree analysis,P.mongolica was located on the basal clade of the phylogenetic tree which had more primitive taxa,and the genetic diversity of P.mongolica was highest.The signifi cant diff erences between P.mongolica and these other Picea species were identifi ed by this research.