For a risk process R_u(t) = u + ct- X(t), t≥0, where u≥0 is the initial capital, c > 0 is the premium rate and X(t), t≥0 is an aggregate claim process, we investigate the probability of the Parisian ruin P_S(u, ...For a risk process R_u(t) = u + ct- X(t), t≥0, where u≥0 is the initial capital, c > 0 is the premium rate and X(t), t≥0 is an aggregate claim process, we investigate the probability of the Parisian ruin P_S(u, T_u) = P{inf (t∈[0,S]_(s∈[t,t+T_u])) sup R_u(s) < 0}, S, T_u > 0.For X being a general Gaussian process we derive approximations of P_S(u, T_u) as u →∞. As a by-product, we obtain the tail asymptotic behaviour of the infimum of a standard Brownian motion with drift over a finite-time interval.展开更多
基金The National Natural Science Foundation of China(6087410710771148)the Opening Fund of Geomathematics Key Laboratory of Sichuan Province(scsxdz2011006)
基金the Swiss National Science Foundation (Grant No. 200021140633/1)the project Risk Analysis, Ruin and Extremes (an FP7 Marie Curie International Research Staff Exchange Scheme Fellowship) (Grant No. 318984)Narodowe Centrum Nauki (Grant No. 2013/09/B/ST1/01778 (2014-2016))
文摘For a risk process R_u(t) = u + ct- X(t), t≥0, where u≥0 is the initial capital, c > 0 is the premium rate and X(t), t≥0 is an aggregate claim process, we investigate the probability of the Parisian ruin P_S(u, T_u) = P{inf (t∈[0,S]_(s∈[t,t+T_u])) sup R_u(s) < 0}, S, T_u > 0.For X being a general Gaussian process we derive approximations of P_S(u, T_u) as u →∞. As a by-product, we obtain the tail asymptotic behaviour of the infimum of a standard Brownian motion with drift over a finite-time interval.