Responses of Prochlorococcus (Pro), Synechococcus (Syn), pico-eukaryotes (Euk) and heterotrophic bacteria (Bact) in pelagic marine ecosystems to external nutrient perturbations were examined using nitrogen- (N), phosp...Responses of Prochlorococcus (Pro), Synechococcus (Syn), pico-eukaryotes (Euk) and heterotrophic bacteria (Bact) in pelagic marine ecosystems to external nutrient perturbations were examined using nitrogen- (N), phosphorus- (P), iron- (Fe), and cobalt- (Co) enriched incubations in the South China Sea in November 1997. Variations in abundance of the 4 groups of microorganism and cellular pigment content of the autotrophs during incubation were followed by flow-cytometric measurements for seven days. During the incubation, Syn and Euk showed a relatively higher demand on Fe and N, while Pro required higher levels of Co and P. The Fe was inadequate for all the organisms in the deep euphotic zone (75 m) of the study area. The experimental results also implied that biological interaction among the organisms played a role in the community structure shift during the incubation. It seemed that besides the effects of temperature, there are some other physical and chemical limitations as well as impacts from biological interactions on Pro distribution in coast waters.展开更多
Using a flow cytometer (FCM) onboard the R/V Xuelong during the 24th Chinese Antarctic cruise, picoplankton community structure and biomass in the surface water were examined along the latitude and around the Antarc...Using a flow cytometer (FCM) onboard the R/V Xuelong during the 24th Chinese Antarctic cruise, picoplankton community structure and biomass in the surface water were examined along the latitude and around the Antarctic Ocean. Salinity and temperature were automatically recorded and total Chl a was determined. Along the cruise, the abundance of Synechococcus, Prochlorococ- cus, pico-eukaryotes and heterotrophic bacteria ranged in 0.001-1.855~ 10s ind./L, 0.000-2.778×108 ind./L, 0.002-1.060×108 ind./L and 0.132-27.073×108 ind./L, respectively. Major oceanic distri- bution of Synechococcus and Prochlorococcus appeared between latitudes 30°N and 30°S. Prochlorococcus was mainly influenced by water temperature, water mass combination and freshwater inflow. Meanwhile, Synechococcus distribution was significantly associated with landing freshwater inflow. Pico-eukaryotes and heterotrophic bacteria were distributed all over the oceans, but with a relatively low abundance in the high latitudes of the Antarctic Ocean. Principal Component Analysis showed that at same latitude of Atlantic Ocean and Indian Ocean, picoplankton distribution and constitution were totally different, geographical location and different water masses combination would be main reasons.展开更多
During spring and autumn of 2006, the investigations on abundance, carbon biomass and distri- bution of picoplankton were carried out in the southern Huanghai Sea (Yellow Sea, sHS). Three groups of picoplankton-Syne...During spring and autumn of 2006, the investigations on abundance, carbon biomass and distri- bution of picoplankton were carried out in the southern Huanghai Sea (Yellow Sea, sHS). Three groups of picoplankton-Synechococcus (Syn), Picoeukaryotes (PEuk) and heterotrophic bacteria (BAC) were identified, but Prochlorococcus (Pro) was undetected. The average abundance of Syn and PEuk was lower in spring (5.0 and 1.3×10^3 cells/cm^3, respectively) than in autumn (92.4 and 2.7×0^3 cells/cm^3, respectively), but it was opposite for BAC (1.3 and 0.7×10^6 cells/cm^3 in spring and autumn, respectively). And the total carbon biomass of picoplankton was higher in spring (37.23×11.67) mg/m^3 than in autumn (21.29×13.75) mg/m^3. The ratios of the three cell abundance were 5:1:1 341 and 30:1:124 in spring and autumn, respectively. And the ratios of carbon biomass of them were 5:7:362 and 9:4:4 in spring and autumn, respectively. Seasonal distribution characteristics of Syn, PEuk, BAC were quite different from each other. In spring, Syn abundance decreased in turn in the central waters (where phytoplankton bloom in spring occurred), the southern waters and inshore waters of the Shandong Peninsula (where even Syn was undetected); the high values of PEuk abundance appeared in the central and southern waters and the inshore of the Shandong Peninsula; the abundance of BAC was nearly three order of magnitude higher than that of photosynthetic picoplankton, and high values appeared in the central waters. In autumn, Syn abundance in central waters was higher than that in surrounding waters, while for PEuk abundance, it decreased in turn in the inshore waters of the Shandong Peninsula, the southern waters and the central waters; BAC presented a complicated blocky type distribution. Sub-surface maximum of each group of picopalnkton appeared in both spring and autumn. Compared with the available lit- eratures concerning the studied area, the range of Syn abundance was larger, and the abundance of BAC was higher. In addition, the conversion factors for calculating picoplanktonic carbon biomass were discussed, with the conversion factors which are different from previous studies in the same surveyed waters. The result of regression analysis showed that there was distinct positive correlation between BAC and photosynthetic picoplankton in spring (r=0.61, P 〈0.001), but no correlation was found in autumn.展开更多
Abundance, carbon biomass and composition of picoplankton along a transect (fromthe Pearl River estuary to Dongsha Island) in the northern South China Sea were measured by flow cytom-etry (FCM); and the vertical struc...Abundance, carbon biomass and composition of picoplankton along a transect (fromthe Pearl River estuary to Dongsha Island) in the northern South China Sea were measured by flow cytom-etry (FCM); and the vertical structure, composition variation, relationship between heterotrophic and au-totrophic picoplankton as well as the controlling mechanism of diel variation were studied. Results showedthat along the horizontal direction, both Synechococcus (SYN) and picoeukaryote (PEUK) were highest inabundance and dominated autotrophic picoplankton in the Pearl River estuary, but decreased展开更多
Iron (FeCl<sub>3</sub>) enrichment experiment was carried out at 6. 3°N, 110°E in the SouthChina Sea. Cell abundances of the main groups of picoplankton Synechococcus, Prochlorococcus, picoeu-k...Iron (FeCl<sub>3</sub>) enrichment experiment was carried out at 6. 3°N, 110°E in the SouthChina Sea. Cell abundances of the main groups of picoplankton Synechococcus, Prochlorococcus, picoeu-karyote and heterotrophic bacteria were traced during the experiment by flow cytometry (FCM). Resultsshowed that picoplankton responded rapidly to iron of nano mole concentration. However, high concentra-展开更多
Picoplankton distribution around the Zhangzi Island(northern Yellow Sea)was investigated by monthly observation from July 2009 to June 2010.Three picoplankton populations were discriminated by flow cytometry,namely ...Picoplankton distribution around the Zhangzi Island(northern Yellow Sea)was investigated by monthly observation from July 2009 to June 2010.Three picoplankton populations were discriminated by flow cytometry,namely Synechococcus,picoeukaryotes and heterotrophic prokaryotes.In summer(from July to September),the edge of the northern Yellow Sea Cold Water Mass(NYSCWM)resulting from water column stratification was observed.In the NYSCWM,picoplankton(including Synechococcus,picoeukaryotes and heterotrophic prokaryotes)distributed synchronically with extremely high abundance in the thermocline(20 m)in July and August(especially in August),whereas in the bottom zone of the NYSCWM(below 30 m),picoplankton abundance was quite low.Synechococcus,picoeukaryotes and heterotrophic prokaryotes showed similar response to the NYSCWM,indicating they had similar regulating mechanism under the influence of NYSCWM.Whereas in the non-NYSCWM,Synechococcus,picoeukaryotes and heterotrophic prokaryotes exhibited different distribution patterns,suggesting they had different controlling mechanisms.Statistical analysis indicated that temperature,nutrients(NO3^and PO4^3-)and ciliate were important factors in regulating picoplankton distribution.The results in this study suggested that the physical event NYSCWM,had strong influence on picoplankton distribution around the Zhangzi Island in the northern Yellow Sea.展开更多
Spatial distributions and seasonal variations of picoplankton (i.e. Synechococcus spp., Prochlorococcus spp., picoeukaryotes and heterotrophic bacteria) and viruses in the Changjiang estuary have been reported in the ...Spatial distributions and seasonal variations of picoplankton (i.e. Synechococcus spp., Prochlorococcus spp., picoeukaryotes and heterotrophic bacteria) and viruses in the Changjiang estuary have been reported in the past. However, short-term variations (e.g. at a tidal timescale) of these organisms and their regulating factors remain unclear. We determined the time-series of fluctuations of picoplankton and viruses with tide simultaneously in flow cytometry in the Changjiang estuary during a cruise in June 2006, in which a tidal model based rectangle equation was applied. The results indicate that high cell abundances of picoplankton and viruses occurred during flood tide and low cell abundances during ebb tide. The period of the surface cell abundance variations was about 13 h, suggesting the surface cell abundances in the Changjiang estuary were largely regulated by tide. However, cell abundances in middle and bottom waters varied in different periods due to influences of tidal induced physical forces such as resuspension and stratification. Therefore, tidal action is an important factor for the diel variations of picoplankton and viruses in the Changjiang estuary.展开更多
Variations of picoplankton groups were investigated over a one-month period in Daya Bay and Sanya Bay,in the northern South China Sea.The two coastal regions exhibited different variation patterns in physicochemical p...Variations of picoplankton groups were investigated over a one-month period in Daya Bay and Sanya Bay,in the northern South China Sea.The two coastal regions exhibited different variation patterns in physicochemical parameters.Moreover,the diel variations of picoplankton groups were different between the two bays.The abundance of the picoplankton in Sanya Bay displayed a pronounced diel variation,while it was not significant in Daya Bay.In addition,some similar patterns of picoplankton abundance were discovered.In the two bays,virioplankton exhibited the smallest fluctuation range,whereas picocyanobacteria fluctuated most markedly.The fluctuation range of picoplankton groups was larger in spring tide than in neap tide,especially in Sanya Bay.Random forest model analysis demonstrated that the variation of picoplankton groups was attributed to physical and chemical factors in Sanya Bay and Daya Bay,respectively.Therefore,our findings suggest that virioplankton abundance can persist more stably in response to changing environmental conditions compared to bacterioplankton and picophytoplankton.展开更多
By using flow cytometry techniques, we investigated the abundance and composition of the heterotrophic prokaryotes, virioplankton and picophytoplankton community in the Pearl River Estuary and Daya Bay in the summer o...By using flow cytometry techniques, we investigated the abundance and composition of the heterotrophic prokaryotes, virioplankton and picophytoplankton community in the Pearl River Estuary and Daya Bay in the summer of 2012. We identified two subgroups of prokaryotes, high nucleic acid(HNA) and low nucleic acid(LNA), characterized by different nucleic acid contents. HNA abundance was significantly correlated with larger phytoplankton and Synechococcus(Syn) abundance, which suggested the important role of organic substrates released from primary producers on bacterial growth. Although LNA did not show any association with environmental variables, it was a vital component of the microbial community. In contrast to previous studies, the total virioplankton concentration had a poor relationship with nutrient availability. The positive relationship between large-sized phytoplankton abundance and the V-I population confirmed that V-I was a phytoplankton-infecting viral subgroup. Although the V-II group(bacteriophages)was dominant in the virioplankton community, it was not related with prokaryotic abundance, which indicated factors other than hosts controlling V-II abundance or the uncertainty of virus-host coupling. With respect to the picophytoplankton community,our results implied that river input exerted a strong limitation to Syn distribution in the estuary, while picoeukaryotes(Euk) were numerically less abundant and showed a quite different distribution pattern from that of Syn, and hence presented ecological properties distinct from Syn in our two studied areas.展开更多
Introduction:The lagoon is a component of coastal zones,whose populations of autotrophic picoplankton(APP)remain largely unstudied.These lagoons display high-nutrient productivity and additionally may also be subjecte...Introduction:The lagoon is a component of coastal zones,whose populations of autotrophic picoplankton(APP)remain largely unstudied.These lagoons display high-nutrient productivity and additionally may also be subjected to anthropogenic activities.This study selected Laguna Macapule,located on the eastern shore in the mid-region of the Gulf of California,due to the fact that a drainage network servicing the surrounding agricultural region(>230,000 hectares under cultivation)directs irrigation runoff,shrimp farm effluents,and urban wastewater containing large quantities of nutrients to be discharged into this lagoon.We propose to identify the APP’s response to various types of environmental and anthropogenic influence in this highly impacted coastal lagoon.Methods:Two sites(separated by 2.7 km)were monitored from December 2007 to December 2008.One,located at the entrance to Laguna Macapule(oceanic influence)and the other a discharge canal(eutrophic conditions)inside the lagoon at El Tortugón.Results:APP was the numerically dominant phytoplankton fraction(15×106 to 620×106 cells L−1)with coccoidal cyanobacteria as the dominant fraction throughout the year.Peak levels were reached in spring-early autumn and they were the second largest contributor to biomass.Abundance of APP cells corresponds to the lagoon’s eutrophic status.Maximum numbers and a higher average of APP were recorded at the El Tortugón channel during the warm season(months with SST higher than 24°C).The general positive relationship of the APP’s annual cycle at both sites as well as a negative relationship with heterotrophic nanoflagellates(HNF)abundance,supports the idea that natural forcing,in particular sea surface temperature(SST)is the predominant influences on APP’s seasonal variability.Conclusions:Distinguishable significant differences in APP abundances and nutrients were recognizable between the two sites.The interplay of these variables contributed to lower densities of APP in winter and high densities in springearly autumn.N:P=~4 suggests that spring-early autumn abundance of the APP autotrophic component was sustained by urea from shrimp farm discharge water.Thus,a total nutrient-based approach is likely the most suitable tool for establishing nitrogen limitation of biological production in Laguna Macapule and similarly impacted ecosystems around the world.展开更多
The influences of a tidal cycle on the distribution of autotrophic plankton were investigated in a hyper-eutrophic lagoon designated as a scenic area.Results showed that the highest concentrations of picoplankton and ...The influences of a tidal cycle on the distribution of autotrophic plankton were investigated in a hyper-eutrophic lagoon designated as a scenic area.Results showed that the highest concentrations of picoplankton and phytoplankton were found in the middle and inner part of the lagoon,irrespective of the tides.The MDS result also revealed that phytoplankton communities,dominated by Ceratium furca,were similar among stations in the inner bay during both flood tides and ebb tides.The time series sampling results at the inlet-outlet channel revealed that almost the same amounts of phytoplankton and picoplankton were carried through the channel during flood and ebb tides,with no trend in nutrient fluctuations except for phosphate which had a net loss from the lagoon.The results showed that tidal cycles do not effectively flush away phytoplankton and picoplankton from the lagoon,and the blooming of phytoand picoplankton is inevitable should the situation stay the same.Steps are needed to alleviate the eutrophication condition instead of depending on the natural process such as tidal cycle.展开更多
文摘Responses of Prochlorococcus (Pro), Synechococcus (Syn), pico-eukaryotes (Euk) and heterotrophic bacteria (Bact) in pelagic marine ecosystems to external nutrient perturbations were examined using nitrogen- (N), phosphorus- (P), iron- (Fe), and cobalt- (Co) enriched incubations in the South China Sea in November 1997. Variations in abundance of the 4 groups of microorganism and cellular pigment content of the autotrophs during incubation were followed by flow-cytometric measurements for seven days. During the incubation, Syn and Euk showed a relatively higher demand on Fe and N, while Pro required higher levels of Co and P. The Fe was inadequate for all the organisms in the deep euphotic zone (75 m) of the study area. The experimental results also implied that biological interaction among the organisms played a role in the community structure shift during the incubation. It seemed that besides the effects of temperature, there are some other physical and chemical limitations as well as impacts from biological interactions on Pro distribution in coast waters.
基金The National Natural Science Foundation of China under contract Nos 40576002 and 40006010the Key International S & T Cooperation Projects under contract No.2008DFA20420+3 种基金the Youth Scientific and Technological Innovation Foundation of Polar Research Institute of China under contract No.JDQ200802the Polar Strategic Research Foundation under contract No.2008209the LMEB Open Research Foundation under contract No.LMEB200902the PhD Program Scholarship Fund of ECNU under contract No.2010041
文摘Using a flow cytometer (FCM) onboard the R/V Xuelong during the 24th Chinese Antarctic cruise, picoplankton community structure and biomass in the surface water were examined along the latitude and around the Antarctic Ocean. Salinity and temperature were automatically recorded and total Chl a was determined. Along the cruise, the abundance of Synechococcus, Prochlorococ- cus, pico-eukaryotes and heterotrophic bacteria ranged in 0.001-1.855~ 10s ind./L, 0.000-2.778×108 ind./L, 0.002-1.060×108 ind./L and 0.132-27.073×108 ind./L, respectively. Major oceanic distri- bution of Synechococcus and Prochlorococcus appeared between latitudes 30°N and 30°S. Prochlorococcus was mainly influenced by water temperature, water mass combination and freshwater inflow. Meanwhile, Synechococcus distribution was significantly associated with landing freshwater inflow. Pico-eukaryotes and heterotrophic bacteria were distributed all over the oceans, but with a relatively low abundance in the high latitudes of the Antarctic Ocean. Principal Component Analysis showed that at same latitude of Atlantic Ocean and Indian Ocean, picoplankton distribution and constitution were totally different, geographical location and different water masses combination would be main reasons.
基金The National Basic Research Program of China under contract No. 2006CB400605the scientific research fund of the Second Institute of Oceanography,SOA under contract No. JG0919
文摘During spring and autumn of 2006, the investigations on abundance, carbon biomass and distri- bution of picoplankton were carried out in the southern Huanghai Sea (Yellow Sea, sHS). Three groups of picoplankton-Synechococcus (Syn), Picoeukaryotes (PEuk) and heterotrophic bacteria (BAC) were identified, but Prochlorococcus (Pro) was undetected. The average abundance of Syn and PEuk was lower in spring (5.0 and 1.3×10^3 cells/cm^3, respectively) than in autumn (92.4 and 2.7×0^3 cells/cm^3, respectively), but it was opposite for BAC (1.3 and 0.7×10^6 cells/cm^3 in spring and autumn, respectively). And the total carbon biomass of picoplankton was higher in spring (37.23×11.67) mg/m^3 than in autumn (21.29×13.75) mg/m^3. The ratios of the three cell abundance were 5:1:1 341 and 30:1:124 in spring and autumn, respectively. And the ratios of carbon biomass of them were 5:7:362 and 9:4:4 in spring and autumn, respectively. Seasonal distribution characteristics of Syn, PEuk, BAC were quite different from each other. In spring, Syn abundance decreased in turn in the central waters (where phytoplankton bloom in spring occurred), the southern waters and inshore waters of the Shandong Peninsula (where even Syn was undetected); the high values of PEuk abundance appeared in the central and southern waters and the inshore of the Shandong Peninsula; the abundance of BAC was nearly three order of magnitude higher than that of photosynthetic picoplankton, and high values appeared in the central waters. In autumn, Syn abundance in central waters was higher than that in surrounding waters, while for PEuk abundance, it decreased in turn in the inshore waters of the Shandong Peninsula, the southern waters and the central waters; BAC presented a complicated blocky type distribution. Sub-surface maximum of each group of picopalnkton appeared in both spring and autumn. Compared with the available lit- eratures concerning the studied area, the range of Syn abundance was larger, and the abundance of BAC was higher. In addition, the conversion factors for calculating picoplanktonic carbon biomass were discussed, with the conversion factors which are different from previous studies in the same surveyed waters. The result of regression analysis showed that there was distinct positive correlation between BAC and photosynthetic picoplankton in spring (r=0.61, P 〈0.001), but no correlation was found in autumn.
基金This work was supported by a grant from NSFC(No.40076031,49825162)and"973"fund(Grant No.G2000078504)
文摘Abundance, carbon biomass and composition of picoplankton along a transect (fromthe Pearl River estuary to Dongsha Island) in the northern South China Sea were measured by flow cytom-etry (FCM); and the vertical structure, composition variation, relationship between heterotrophic and au-totrophic picoplankton as well as the controlling mechanism of diel variation were studied. Results showedthat along the horizontal direction, both Synechococcus (SYN) and picoeukaryote (PEUK) were highest inabundance and dominated autotrophic picoplankton in the Pearl River estuary, but decreased
基金This study was supported by the 973 Project No.G2000087500,NSFC Project No.40232021,30170189 and 40176037
文摘Iron (FeCl<sub>3</sub>) enrichment experiment was carried out at 6. 3°N, 110°E in the SouthChina Sea. Cell abundances of the main groups of picoplankton Synechococcus, Prochlorococcus, picoeu-karyote and heterotrophic bacteria were traced during the experiment by flow cytometry (FCM). Resultsshowed that picoplankton responded rapidly to iron of nano mole concentration. However, high concentra-
基金The National Natural Science Foundation of China under contract Nos 41306160the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1606404the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11020103.1
文摘Picoplankton distribution around the Zhangzi Island(northern Yellow Sea)was investigated by monthly observation from July 2009 to June 2010.Three picoplankton populations were discriminated by flow cytometry,namely Synechococcus,picoeukaryotes and heterotrophic prokaryotes.In summer(from July to September),the edge of the northern Yellow Sea Cold Water Mass(NYSCWM)resulting from water column stratification was observed.In the NYSCWM,picoplankton(including Synechococcus,picoeukaryotes and heterotrophic prokaryotes)distributed synchronically with extremely high abundance in the thermocline(20 m)in July and August(especially in August),whereas in the bottom zone of the NYSCWM(below 30 m),picoplankton abundance was quite low.Synechococcus,picoeukaryotes and heterotrophic prokaryotes showed similar response to the NYSCWM,indicating they had similar regulating mechanism under the influence of NYSCWM.Whereas in the non-NYSCWM,Synechococcus,picoeukaryotes and heterotrophic prokaryotes exhibited different distribution patterns,suggesting they had different controlling mechanisms.Statistical analysis indicated that temperature,nutrients(NO3^and PO4^3-)and ciliate were important factors in regulating picoplankton distribution.The results in this study suggested that the physical event NYSCWM,had strong influence on picoplankton distribution around the Zhangzi Island in the northern Yellow Sea.
基金Supported by the National Basic Research Program of China (973 Program) (Nos. 2002CB412405, 2004CB720505)a fund to the Innovative Research Team, the Ministry of Education of China (No.IRT0427)+1 种基金the PhD Program Scholarship Fund of ECNU 2007the Special Research Fund for the National Non-profit Institutes (East China Sea Fisheries Research Institutes) (No. 2008M13)
文摘Spatial distributions and seasonal variations of picoplankton (i.e. Synechococcus spp., Prochlorococcus spp., picoeukaryotes and heterotrophic bacteria) and viruses in the Changjiang estuary have been reported in the past. However, short-term variations (e.g. at a tidal timescale) of these organisms and their regulating factors remain unclear. We determined the time-series of fluctuations of picoplankton and viruses with tide simultaneously in flow cytometry in the Changjiang estuary during a cruise in June 2006, in which a tidal model based rectangle equation was applied. The results indicate that high cell abundances of picoplankton and viruses occurred during flood tide and low cell abundances during ebb tide. The period of the surface cell abundance variations was about 13 h, suggesting the surface cell abundances in the Changjiang estuary were largely regulated by tide. However, cell abundances in middle and bottom waters varied in different periods due to influences of tidal induced physical forces such as resuspension and stratification. Therefore, tidal action is an important factor for the diel variations of picoplankton and viruses in the Changjiang estuary.
基金Supported by the National Natural Science Foundation of China(Nos.42176116,41576126,41890851,U21A6001)the Natural Science Foundation of Guangdong Province(No.2017A030306020)+4 种基金the Guangdong Major Project of Basic and Applied Basic Research(No.2019B030302004)the Rising Star Foundation of the South China Sea Institute of Oceanology(No.NHXX2019ST0101)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2018377)the Science and Technology Planning Project of Guangdong Province of China(No.2021B1212050023)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA19060503)。
文摘Variations of picoplankton groups were investigated over a one-month period in Daya Bay and Sanya Bay,in the northern South China Sea.The two coastal regions exhibited different variation patterns in physicochemical parameters.Moreover,the diel variations of picoplankton groups were different between the two bays.The abundance of the picoplankton in Sanya Bay displayed a pronounced diel variation,while it was not significant in Daya Bay.In addition,some similar patterns of picoplankton abundance were discovered.In the two bays,virioplankton exhibited the smallest fluctuation range,whereas picocyanobacteria fluctuated most markedly.The fluctuation range of picoplankton groups was larger in spring tide than in neap tide,especially in Sanya Bay.Random forest model analysis demonstrated that the variation of picoplankton groups was attributed to physical and chemical factors in Sanya Bay and Daya Bay,respectively.Therefore,our findings suggest that virioplankton abundance can persist more stably in response to changing environmental conditions compared to bacterioplankton and picophytoplankton.
基金supported by the National Basic Research Program (973 Program) of China (Nos. 2015CB452905, 2015CB452903)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA11020205)+1 种基金Fund of Key Laboratory of Global Change and Marine-Atmospheric Chemistry, SOA, (GCMAC1209)Public science and technology research funds projects of ocean (201105015-06)
文摘By using flow cytometry techniques, we investigated the abundance and composition of the heterotrophic prokaryotes, virioplankton and picophytoplankton community in the Pearl River Estuary and Daya Bay in the summer of 2012. We identified two subgroups of prokaryotes, high nucleic acid(HNA) and low nucleic acid(LNA), characterized by different nucleic acid contents. HNA abundance was significantly correlated with larger phytoplankton and Synechococcus(Syn) abundance, which suggested the important role of organic substrates released from primary producers on bacterial growth. Although LNA did not show any association with environmental variables, it was a vital component of the microbial community. In contrast to previous studies, the total virioplankton concentration had a poor relationship with nutrient availability. The positive relationship between large-sized phytoplankton abundance and the V-I population confirmed that V-I was a phytoplankton-infecting viral subgroup. Although the V-II group(bacteriophages)was dominant in the virioplankton community, it was not related with prokaryotic abundance, which indicated factors other than hosts controlling V-II abundance or the uncertainty of virus-host coupling. With respect to the picophytoplankton community,our results implied that river input exerted a strong limitation to Syn distribution in the estuary, while picoeukaryotes(Euk) were numerically less abundant and showed a quite different distribution pattern from that of Syn, and hence presented ecological properties distinct from Syn in our two studied areas.
基金This study was funded by the Dirección de Estudios de Posgrado e Investigación,Instituto Politécnico Nacional(SIP grant 20082265)A.M.L.,D.E.U.,and B.G.A.are COFAA-IPN and EDI-IPN fellows of the Instituto Politécnico Nacional of Mexico.C.H.S.received fellowships from PIFI-IPN and Consejo Nacional de Ciencia y Tecnología(CONACYT).
文摘Introduction:The lagoon is a component of coastal zones,whose populations of autotrophic picoplankton(APP)remain largely unstudied.These lagoons display high-nutrient productivity and additionally may also be subjected to anthropogenic activities.This study selected Laguna Macapule,located on the eastern shore in the mid-region of the Gulf of California,due to the fact that a drainage network servicing the surrounding agricultural region(>230,000 hectares under cultivation)directs irrigation runoff,shrimp farm effluents,and urban wastewater containing large quantities of nutrients to be discharged into this lagoon.We propose to identify the APP’s response to various types of environmental and anthropogenic influence in this highly impacted coastal lagoon.Methods:Two sites(separated by 2.7 km)were monitored from December 2007 to December 2008.One,located at the entrance to Laguna Macapule(oceanic influence)and the other a discharge canal(eutrophic conditions)inside the lagoon at El Tortugón.Results:APP was the numerically dominant phytoplankton fraction(15×106 to 620×106 cells L−1)with coccoidal cyanobacteria as the dominant fraction throughout the year.Peak levels were reached in spring-early autumn and they were the second largest contributor to biomass.Abundance of APP cells corresponds to the lagoon’s eutrophic status.Maximum numbers and a higher average of APP were recorded at the El Tortugón channel during the warm season(months with SST higher than 24°C).The general positive relationship of the APP’s annual cycle at both sites as well as a negative relationship with heterotrophic nanoflagellates(HNF)abundance,supports the idea that natural forcing,in particular sea surface temperature(SST)is the predominant influences on APP’s seasonal variability.Conclusions:Distinguishable significant differences in APP abundances and nutrients were recognizable between the two sites.The interplay of these variables contributed to lower densities of APP in winter and high densities in springearly autumn.N:P=~4 suggests that spring-early autumn abundance of the APP autotrophic component was sustained by urea from shrimp farm discharge water.Thus,a total nutrient-based approach is likely the most suitable tool for establishing nitrogen limitation of biological production in Laguna Macapule and similarly impacted ecosystems around the world.
基金supported by the Dapeng Bay National Scenic Area Ad-ministration to PJ Meng and by the National Science Council,Taiwan,China to KS Tew (NSC94-2621-B-291-002)
文摘The influences of a tidal cycle on the distribution of autotrophic plankton were investigated in a hyper-eutrophic lagoon designated as a scenic area.Results showed that the highest concentrations of picoplankton and phytoplankton were found in the middle and inner part of the lagoon,irrespective of the tides.The MDS result also revealed that phytoplankton communities,dominated by Ceratium furca,were similar among stations in the inner bay during both flood tides and ebb tides.The time series sampling results at the inlet-outlet channel revealed that almost the same amounts of phytoplankton and picoplankton were carried through the channel during flood and ebb tides,with no trend in nutrient fluctuations except for phosphate which had a net loss from the lagoon.The results showed that tidal cycles do not effectively flush away phytoplankton and picoplankton from the lagoon,and the blooming of phytoand picoplankton is inevitable should the situation stay the same.Steps are needed to alleviate the eutrophication condition instead of depending on the natural process such as tidal cycle.