期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Simultaneous Approximation of Sobolev Classes by Piecewise Cubic Hermite Interpolation 被引量:2
1
作者 Guiqiao Xu Zheng Zhang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2014年第3期317-333,共17页
For the approximation in L_(p)-norm,we determine the weakly asymptotic orders for the simultaneous approximation errors of Sobolev classes by piecewise cubic Hermite interpolation with equidistant knots.For p=1,∞,we ... For the approximation in L_(p)-norm,we determine the weakly asymptotic orders for the simultaneous approximation errors of Sobolev classes by piecewise cubic Hermite interpolation with equidistant knots.For p=1,∞,we obtain its values.By these results we know that for the Sobolev classes,the approximation errors by piecewise cubic Hermite interpolation are weakly equivalent to the corresponding infinite-dimensional Kolmogorov widths.At the same time,the approximation errors of derivatives are weakly equivalent to the corresponding infinite-dimensional Kolmogorov widths. 展开更多
关键词 piecewise cubic hermite interpolation L_(p)-norm simultaneous approximation equidistant knot infinite-dimensional Kolmogorov width
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部