According to the differences of structural deformation characteristics, the southern margin of the Junggar basin can be divided into two segments from east to west. Arcnate thrust-and-fold belts that protrude to the n...According to the differences of structural deformation characteristics, the southern margin of the Junggar basin can be divided into two segments from east to west. Arcnate thrust-and-fold belts that protrude to the north are developed in the eastern segment. There are three rows of en echelon thrust-and-fold belts in the western segment. Thrust and fold structures of basement-involved styles are developed in the first row, and decollement fold structures are formed from the second row to the third row. In order to study the factors controlling the deformation of structures, sand-box experiments have been devised to simulate the evolution of plane and profile deformation. The planar simulation results indicate that the orthogonal compression coming from Bogeda Mountain and the oblique compression with an angle of 75° between the stress and the boundary originating from North Tianshan were responsible for the deformation differences between the eastern part and the western part. The Miquan-Uriimqi fault in the basement is the pre-existing condition for generating fragments from east to west. The profile simulation results show that the main factors controlling the deformation in the eastern part are related to the decollement of Jurassic coal beds alone, while those controlling the deformation in the western segment are related to both the Jurassic coal beds and the Eogene clay beds. The total amount of shortening from the Yaomoshan anticline to the Gumudi anticline in the eastern part is -19.57 km as estimated from the simulation results, and the shortening rate is about 36.46%; that from the Qingshuihe anticline to the Anjihai anticline in the western part is -22.01 km as estimated by the simulation results, with a shortening rate of about 32.48%. These estimated values obtained from the model results are very close to the values calculated by means of the balanced cross section.展开更多
The Yuguang basin is a half-graben basin in the basin-range tectonic zone in northwest Beijing,located at the northern end of the Shanxi graben system,and the Yuguang basin southern marginal fault( YBSMF) controls the...The Yuguang basin is a half-graben basin in the basin-range tectonic zone in northwest Beijing,located at the northern end of the Shanxi graben system,and the Yuguang basin southern marginal fault( YBSMF) controls the formation of this basin. A linear fault escarpment has formed in the proluvial fan on the piedmont fault zone of the Tangshankou segment of YBSMF. A trench across this escarpment reveals three paleo-earthquake events on two active faults. One fault ruptured at about 9 ka for the first time,and then faulted again at about 7. 3 ka,causing the formation and synchronous activity of another fault.Finally,they faulted for the third time,but we cannot determine the faulting time due to the lack of relevant surface deposition. The accumulative vertical displacement of these three events is about 8. 1 m. We estimate that the average recurrence period of the piedmont fault is about 1. 7 ka,and the average slip rate of the piedmont fault is about1. 6 mm/a. We also estimate the reference magnitude of each event according to the empirical formula.展开更多
基金financially supported by the National Natural Science Foundation of China(No.40972091)
文摘According to the differences of structural deformation characteristics, the southern margin of the Junggar basin can be divided into two segments from east to west. Arcnate thrust-and-fold belts that protrude to the north are developed in the eastern segment. There are three rows of en echelon thrust-and-fold belts in the western segment. Thrust and fold structures of basement-involved styles are developed in the first row, and decollement fold structures are formed from the second row to the third row. In order to study the factors controlling the deformation of structures, sand-box experiments have been devised to simulate the evolution of plane and profile deformation. The planar simulation results indicate that the orthogonal compression coming from Bogeda Mountain and the oblique compression with an angle of 75° between the stress and the boundary originating from North Tianshan were responsible for the deformation differences between the eastern part and the western part. The Miquan-Uriimqi fault in the basement is the pre-existing condition for generating fragments from east to west. The profile simulation results show that the main factors controlling the deformation in the eastern part are related to the decollement of Jurassic coal beds alone, while those controlling the deformation in the western segment are related to both the Jurassic coal beds and the Eogene clay beds. The total amount of shortening from the Yaomoshan anticline to the Gumudi anticline in the eastern part is -19.57 km as estimated from the simulation results, and the shortening rate is about 36.46%; that from the Qingshuihe anticline to the Anjihai anticline in the western part is -22.01 km as estimated by the simulation results, with a shortening rate of about 32.48%. These estimated values obtained from the model results are very close to the values calculated by means of the balanced cross section.
基金funded by the Special Fund for Basic Scientific Research of Institute of Earthquake Science,China Earthquake Administration(2015 IES010202)the Seismic Risk Assessment Project for Active Faults in Key Region of Earthquake Monitoring and Prevention in China(201210916)
文摘The Yuguang basin is a half-graben basin in the basin-range tectonic zone in northwest Beijing,located at the northern end of the Shanxi graben system,and the Yuguang basin southern marginal fault( YBSMF) controls the formation of this basin. A linear fault escarpment has formed in the proluvial fan on the piedmont fault zone of the Tangshankou segment of YBSMF. A trench across this escarpment reveals three paleo-earthquake events on two active faults. One fault ruptured at about 9 ka for the first time,and then faulted again at about 7. 3 ka,causing the formation and synchronous activity of another fault.Finally,they faulted for the third time,but we cannot determine the faulting time due to the lack of relevant surface deposition. The accumulative vertical displacement of these three events is about 8. 1 m. We estimate that the average recurrence period of the piedmont fault is about 1. 7 ka,and the average slip rate of the piedmont fault is about1. 6 mm/a. We also estimate the reference magnitude of each event according to the empirical formula.