Using simultaneously collected remote sensing data and field measurements, this study firstly assessed the consistency and applicability of China high-resolution earth observation system satellite 1 (GF-1) wide fiel...Using simultaneously collected remote sensing data and field measurements, this study firstly assessed the consistency and applicability of China high-resolution earth observation system satellite 1 (GF-1) wide field of view (WFV) camera, environment and disaster monitoring and forecasting satellite (H J-l) charge coupled device (CCD), and Landsat-8 opera- tional land imager (OLI) data for estimating the leaf area index (LAI) of winter wheat via reflectance and vegetation indices (VIs). The accuracies of these LAI estimates were then assessed through comparison with an empirical model and the PROSAIL radiative transfer model. The effects of radiation calibration, spectral response functions, and spatial resolution on discrepancies in the LAI estimates between the different sensors were also analyzed. The results yielded the following observations: (1) The correlation between reflectance from different sensors is relative good, with the adjusted coefficients of determination (R2) between 0.375 to 0.818. The differences in reflectance are ranging from 0.002 to 0.054. The correlation between VIs from different sensors is high with the R2 between 0.729 and 0.933. The differences in the VIs are ranging from 0.07 to 0.156. These results show the three sensors' images can all be used for cross calibration of the reflectance and VIs. (2) The four VIs from the three sensors are all demonstrated to be highly correlated with LAI (R2 between 0.703 and 0.849). The linear models associated with the 2-band enhanced vegetation index (EVI2), which feature the highest R2 (higher than 0.746) and the lowest root mean square errors (RMSE) (less than 0.21), were selected to estimate the winter wheat LAI. The accuracy of the estimated LAI from Landsat-8 was the highest, with the relative errors (RE) of 2.18% and an RMSE of 0.13, while the H J-1 was the lowest, with the RE of 2.43% and the RMSE of 0.15. (3) The inversion errors in the different sensors' LAI estimates using the PROSAIL model are small. The accuracy of the GF-1 is the highest with the RE of 3.44%, and the RMSE of 0.22, whereas that of the H J-1 is the lowest with the RE of 4.95%, and the RMSE of 0.26. (4) The effects of the spectral response function and radiation calibration for the different sensors are small and can be ignored, but the effects of spatial resolution are significant and must be taken into consideration in practical applications.展开更多
With the rapid development of economy and increase of population in the drainage areas, the nutrient loading has increased dramatically in the Changjiang estuary and adjacent coastal waters. To properly assess the imp...With the rapid development of economy and increase of population in the drainage areas, the nutrient loading has increased dramatically in the Changjiang estuary and adjacent coastal waters. To properly assess the impact of nutrient enrichment on phytoplankton community, seasonal microcosm experiments were conducted during August 2010-July 2011 in the coastal waters of Zhejiang Province. The results of the present study indicated that the chl a concentration, cell abundance, diversity indices, species composition and community succession of the phytoplankton varied significantly with different N/P ratios and seasons. Higher growth was observed in the 64:1 (spring), 32:1 (summer), 16:1 (autumn) and 128:1,256:1 (winter) treatments, respectively. The values of Shannon-Wiener index (H) and Pielou evenness index (J) were lower in the 8:1 and 16:1 treatments in autumn test, while H value was higher in the 128:1 and 8:1 treatments in winter test. A definite community succession order from diatoms to dinoflagel lares was observed in the autumn and winter tests, while the diatoms dominated the community throughout the culture in the spring and summer tests.展开更多
基金supported by the National Natural Science Foundation of China (41371396,41401491 and 41471364)the Introduction of International Advanced Agricultural Science and Technology,Ministry of Agriculture,China (948 Program,2011-G6)the Agricultural Scientific Research Fund of Outstanding Talents and the Open Fund for the Key Laboratory of Agri-informatics,Ministry of Agriculture,China (2013009)
文摘Using simultaneously collected remote sensing data and field measurements, this study firstly assessed the consistency and applicability of China high-resolution earth observation system satellite 1 (GF-1) wide field of view (WFV) camera, environment and disaster monitoring and forecasting satellite (H J-l) charge coupled device (CCD), and Landsat-8 opera- tional land imager (OLI) data for estimating the leaf area index (LAI) of winter wheat via reflectance and vegetation indices (VIs). The accuracies of these LAI estimates were then assessed through comparison with an empirical model and the PROSAIL radiative transfer model. The effects of radiation calibration, spectral response functions, and spatial resolution on discrepancies in the LAI estimates between the different sensors were also analyzed. The results yielded the following observations: (1) The correlation between reflectance from different sensors is relative good, with the adjusted coefficients of determination (R2) between 0.375 to 0.818. The differences in reflectance are ranging from 0.002 to 0.054. The correlation between VIs from different sensors is high with the R2 between 0.729 and 0.933. The differences in the VIs are ranging from 0.07 to 0.156. These results show the three sensors' images can all be used for cross calibration of the reflectance and VIs. (2) The four VIs from the three sensors are all demonstrated to be highly correlated with LAI (R2 between 0.703 and 0.849). The linear models associated with the 2-band enhanced vegetation index (EVI2), which feature the highest R2 (higher than 0.746) and the lowest root mean square errors (RMSE) (less than 0.21), were selected to estimate the winter wheat LAI. The accuracy of the estimated LAI from Landsat-8 was the highest, with the relative errors (RE) of 2.18% and an RMSE of 0.13, while the H J-1 was the lowest, with the RE of 2.43% and the RMSE of 0.15. (3) The inversion errors in the different sensors' LAI estimates using the PROSAIL model are small. The accuracy of the GF-1 is the highest with the RE of 3.44%, and the RMSE of 0.22, whereas that of the H J-1 is the lowest with the RE of 4.95%, and the RMSE of 0.26. (4) The effects of the spectral response function and radiation calibration for the different sensors are small and can be ignored, but the effects of spatial resolution are significant and must be taken into consideration in practical applications.
基金supported by the Ministry of Science and Technology of P.R.China under grant contracts (No.2010CB428903)the National Natural Science Foundation of China (No.41306112)+3 种基金the National Marine Public Welfare Research Project of China (Nos.201305043,200805069)the Zhejiang Provincial Natural Science Foundation (Nos.LY13D060004,Y5110131)the Marine Science Foundation of State Oceanic Administration for Youth (Nos.2013140,2013144)the Basic Scientific Research Fund of SIO,China (Nos.JG1311,JG1221)
文摘With the rapid development of economy and increase of population in the drainage areas, the nutrient loading has increased dramatically in the Changjiang estuary and adjacent coastal waters. To properly assess the impact of nutrient enrichment on phytoplankton community, seasonal microcosm experiments were conducted during August 2010-July 2011 in the coastal waters of Zhejiang Province. The results of the present study indicated that the chl a concentration, cell abundance, diversity indices, species composition and community succession of the phytoplankton varied significantly with different N/P ratios and seasons. Higher growth was observed in the 64:1 (spring), 32:1 (summer), 16:1 (autumn) and 128:1,256:1 (winter) treatments, respectively. The values of Shannon-Wiener index (H) and Pielou evenness index (J) were lower in the 8:1 and 16:1 treatments in autumn test, while H value was higher in the 128:1 and 8:1 treatments in winter test. A definite community succession order from diatoms to dinoflagel lares was observed in the autumn and winter tests, while the diatoms dominated the community throughout the culture in the spring and summer tests.