目的对Piezo1蛋白在巨噬细胞参与铁代谢平衡调控中作用作一综述,总结近年来关于年龄相关骨量丢失及巨噬细胞Piezo1的最新研究进展,为治疗年龄相关骨量丢失提供新思路。方法计算机检索CNKI、PubMed等数据库自建库至2023年1月与巨噬细胞Pi...目的对Piezo1蛋白在巨噬细胞参与铁代谢平衡调控中作用作一综述,总结近年来关于年龄相关骨量丢失及巨噬细胞Piezo1的最新研究进展,为治疗年龄相关骨量丢失提供新思路。方法计算机检索CNKI、PubMed等数据库自建库至2023年1月与巨噬细胞Piezo1在年龄相关骨量丢失的相关文献,中文检索关键词为“巨噬细胞、机械敏感性离子通道蛋白、年龄相关骨量丢失、骨质疏松症”,英文检索关键词为“Macrophages、Piezo1、age⁃related bone loss、ARBL、Osteoporosis”,最终将42篇文献纳入。结果与结论巨噬细胞参与铁代谢平衡的调控,骨髓巨噬细胞中Piezo1高表达能导致机体出现铁超载,进而导致ARBL的发生。Piezo1为治疗年龄相关骨量丢失提供了分子层面的新思路和新视角。展开更多
心血管疾病(cardiovascular diseases,CVD)是世界范围内威胁人类健康的主要疾病,也是21世纪中国所面临的主要公共卫生问题之一。在许多国家和地区,CVD的死亡率高居榜首。截至2018年,中国的CVD患病人数达到2.9亿[1]。机械敏感性离子通道(...心血管疾病(cardiovascular diseases,CVD)是世界范围内威胁人类健康的主要疾病,也是21世纪中国所面临的主要公共卫生问题之一。在许多国家和地区,CVD的死亡率高居榜首。截至2018年,中国的CVD患病人数达到2.9亿[1]。机械敏感性离子通道(mechanosensitive ion channels)是一种能够感受细胞膜机械力变化并迅速做出反应的离子通道,广泛分布于各组织器官,参与生物体内的多种生理过程,同时可以将膜感受到的机械信号转化为电信号或化学信号[2]。展开更多
目的:观察全身振动疗法(whole body vibration therapy,WBVT)治疗激素性股骨头坏死(steroid-induced osteonecrosis of the femoral head,SONFH)的效果,并探讨其治疗SONFH的作用机制。方法:将50只SD大鼠随机分为空白组、模型组、WBVT组...目的:观察全身振动疗法(whole body vibration therapy,WBVT)治疗激素性股骨头坏死(steroid-induced osteonecrosis of the femoral head,SONFH)的效果,并探讨其治疗SONFH的作用机制。方法:将50只SD大鼠随机分为空白组、模型组、WBVT组、Yoda1组、WBVT联合蜘蛛毒液肽(Grammostola spatulata mechanotoxin 4,GsMTx4)组。模型组、WBVT组、Yoda1组、WBVT联合GsMTx4组大鼠采用脂多糖联合甲泼尼龙琥珀酸钠构建SONFH模型。造模后,WBVT组使用WBVT干预,Yoda1组使用Piezo1蛋白激动剂Yoda1干预,WBVT联合GsMTx4组使用WBVT和Piezo1蛋白抑制剂GsMTx4干预。干预结束后,进行大鼠股骨头组织病理学观察(计算股骨头空骨陷窝率)、骨微结构观察,以及股骨头内Piezo1、骨形态发生蛋白2(bone morphogenetic protein 2,BMP2)、Runt相关转录因子2(Runt-related transcription factor 2,Runx2)、低氧诱导因子-1α(hypoxia-inducible factor-1α,HIF-1α)、血管内皮生长因子(vascular endothelial growth factor,VEGF)、分化簇31(cluster of differentiation 31,CD31)/内皮粘蛋白(endomucin,EMCN)蛋白表达量检测。结果:(1)大鼠股骨头组织病理学观察结果。空白组大鼠的股骨头内骨小梁致密且排列整齐。与空白组相比,模型组大鼠股骨头内的骨小梁较为稀疏,骨小梁细小、不连续,且排列紊乱。与模型组相比,WBVT组和Yoda1组大鼠的股骨头内骨小梁数量增多,排列较为整齐。与WBVT组相比,WBVT联合GsMTx4组大鼠的股骨头内骨小梁排列则较为紊乱。模型组、WBVT组、Yoda1组、WBVT联合GsMTx4组大鼠的股骨头空骨陷窝率均高于空白组(P=0.000,P=0.000,P=0.000,P=0.000),WBVT组、Yoda1组大鼠的股骨头空骨陷窝率均低于模型组(P=0.000,P=0.000),WBVT联合GsMTx4组大鼠的股骨头空骨陷窝率高于WBVT组(P=0.000)。(2)大鼠股骨头骨微结构观察结果。WBVT组和Yoda1组大鼠的股骨头骨体积分数、骨小梁厚度、骨小梁数量、骨小梁分离度与空白组的差异均无统计学意义(P=0.213,P=0.081,P=0.384,P=0.471;P=0.435,P=0.131,P=0.104,P=0.126)。模型组和WBVT联合GsMTx4组大鼠的股骨头骨体积分数、骨小梁厚度、骨小梁数量均低于空白组(P=0.000,P=0.000,P=0.000;P=0.000,P=0.000,P=0.000),骨小梁分离度均高于空白组(P=0.000,P=0.000)。WBVT组和Yoda1组大鼠的股骨头骨体积分数、骨小梁厚度、骨小梁数量均高于模型组(P=0.000,P=0.002,P=0.000;P=0.000,P=0.007,P=0.014),骨小梁分离度均低于模型组(P=0.000,P=0.000)。WBVT组大鼠的股骨头骨体积分数、骨小梁厚度、骨小梁数量、骨小梁分离度与Yoda1组的差异均无统计学意义(P=0.194,P=0.223,P=0.332,P=0.071)。WBVT联合GsMTx4组大鼠的股骨头骨体积分数、骨小梁厚度、骨小梁数量均低于WBVT组(P=0.002,P=0.021,P=0.000),骨小梁分离度高于WBVT组(P=0.000)。(3)大鼠股骨头内Piezo1、BMP2、Runx2、HIF-1α、VEGF蛋白表达量检测结果。WBVT组和Yoda1组大鼠股骨头内Piezo1、BMP2、Runx2、HIF-1α、VEGF蛋白表达量与空白组的差异均无统计学意义(P=0.061,P=0.122,P=0.773,P=0.814,P=0.991;P=0.112,P=0.071,P=0.955,P=0.749,P=0.915)。模型组和WBVT联合GsMTx4组大鼠股骨头内Piezo1、BMP2、Runx2、HIF-1α、VEGF蛋白表达量均低于空白组(P=0.000,P=0.000,P=0.000,P=0.000,P=0.000;P=0.000,P=0.000,P=0.000,P=0.000,P=0.000)。WBVT组和Yoda1组大鼠股骨头内Piezo1、BMP2、Runx2、HIF-1α、VEGF蛋白表达量均高于模型组(P=0.000,P=0.000,P=0.000,P=0.000,P=0.000;P=0.000,P=0.000,P=0.000,P=0.000,P=0.000)。WBVT组大鼠股骨头内Piezo1、BMP2、Runx2、HIF-1α、VEGF蛋白表达量与Yoda1组的差异均无统计学意义(P=0.962,P=0.179,P=0.214,P=0.990,P=0.975)。WBVT联合GsMTx4组大鼠股骨头内Piezo1、BMP2、Runx2、HIF-1α、VEGF蛋白表达量均低于WBVT组(P=0.000,P=0.000,P=0.000,P=0.000,P=0.000)。(4)大鼠股骨头内CD31/EMCN蛋白表达量检测结果。模型组和WBVT联合GsMTx4组大鼠股骨头内CD31/EMCN表达量均低于空白组(P=0.000,P=0.000)。WBVT组和Yoda1组大鼠股骨头内CD31/EMCN表达量与空白组的差异均无统计学意义(P=0.412,P=0.991)。WBVT组和Yoda1组大鼠股骨头内CD31/EMCN表达量均高于模型组(P=0.000,P=0.000)。WBVT联合GsMTx4组大鼠股骨头内CD31/EMCN表达量低于WBVT组(P=0.000)。结论:WBVT可以促进股骨头坏死组织修复,其作用机制可能与上调Piezo1蛋白的表达影响HIF-1α/VEGF轴,进而促进股骨头内H型血管的生成、改善股骨头血供有关。展开更多
文摘目的对Piezo1蛋白在巨噬细胞参与铁代谢平衡调控中作用作一综述,总结近年来关于年龄相关骨量丢失及巨噬细胞Piezo1的最新研究进展,为治疗年龄相关骨量丢失提供新思路。方法计算机检索CNKI、PubMed等数据库自建库至2023年1月与巨噬细胞Piezo1在年龄相关骨量丢失的相关文献,中文检索关键词为“巨噬细胞、机械敏感性离子通道蛋白、年龄相关骨量丢失、骨质疏松症”,英文检索关键词为“Macrophages、Piezo1、age⁃related bone loss、ARBL、Osteoporosis”,最终将42篇文献纳入。结果与结论巨噬细胞参与铁代谢平衡的调控,骨髓巨噬细胞中Piezo1高表达能导致机体出现铁超载,进而导致ARBL的发生。Piezo1为治疗年龄相关骨量丢失提供了分子层面的新思路和新视角。
文摘心血管疾病(cardiovascular diseases,CVD)是世界范围内威胁人类健康的主要疾病,也是21世纪中国所面临的主要公共卫生问题之一。在许多国家和地区,CVD的死亡率高居榜首。截至2018年,中国的CVD患病人数达到2.9亿[1]。机械敏感性离子通道(mechanosensitive ion channels)是一种能够感受细胞膜机械力变化并迅速做出反应的离子通道,广泛分布于各组织器官,参与生物体内的多种生理过程,同时可以将膜感受到的机械信号转化为电信号或化学信号[2]。
文摘目的:观察全身振动疗法(whole body vibration therapy,WBVT)治疗激素性股骨头坏死(steroid-induced osteonecrosis of the femoral head,SONFH)的效果,并探讨其治疗SONFH的作用机制。方法:将50只SD大鼠随机分为空白组、模型组、WBVT组、Yoda1组、WBVT联合蜘蛛毒液肽(Grammostola spatulata mechanotoxin 4,GsMTx4)组。模型组、WBVT组、Yoda1组、WBVT联合GsMTx4组大鼠采用脂多糖联合甲泼尼龙琥珀酸钠构建SONFH模型。造模后,WBVT组使用WBVT干预,Yoda1组使用Piezo1蛋白激动剂Yoda1干预,WBVT联合GsMTx4组使用WBVT和Piezo1蛋白抑制剂GsMTx4干预。干预结束后,进行大鼠股骨头组织病理学观察(计算股骨头空骨陷窝率)、骨微结构观察,以及股骨头内Piezo1、骨形态发生蛋白2(bone morphogenetic protein 2,BMP2)、Runt相关转录因子2(Runt-related transcription factor 2,Runx2)、低氧诱导因子-1α(hypoxia-inducible factor-1α,HIF-1α)、血管内皮生长因子(vascular endothelial growth factor,VEGF)、分化簇31(cluster of differentiation 31,CD31)/内皮粘蛋白(endomucin,EMCN)蛋白表达量检测。结果:(1)大鼠股骨头组织病理学观察结果。空白组大鼠的股骨头内骨小梁致密且排列整齐。与空白组相比,模型组大鼠股骨头内的骨小梁较为稀疏,骨小梁细小、不连续,且排列紊乱。与模型组相比,WBVT组和Yoda1组大鼠的股骨头内骨小梁数量增多,排列较为整齐。与WBVT组相比,WBVT联合GsMTx4组大鼠的股骨头内骨小梁排列则较为紊乱。模型组、WBVT组、Yoda1组、WBVT联合GsMTx4组大鼠的股骨头空骨陷窝率均高于空白组(P=0.000,P=0.000,P=0.000,P=0.000),WBVT组、Yoda1组大鼠的股骨头空骨陷窝率均低于模型组(P=0.000,P=0.000),WBVT联合GsMTx4组大鼠的股骨头空骨陷窝率高于WBVT组(P=0.000)。(2)大鼠股骨头骨微结构观察结果。WBVT组和Yoda1组大鼠的股骨头骨体积分数、骨小梁厚度、骨小梁数量、骨小梁分离度与空白组的差异均无统计学意义(P=0.213,P=0.081,P=0.384,P=0.471;P=0.435,P=0.131,P=0.104,P=0.126)。模型组和WBVT联合GsMTx4组大鼠的股骨头骨体积分数、骨小梁厚度、骨小梁数量均低于空白组(P=0.000,P=0.000,P=0.000;P=0.000,P=0.000,P=0.000),骨小梁分离度均高于空白组(P=0.000,P=0.000)。WBVT组和Yoda1组大鼠的股骨头骨体积分数、骨小梁厚度、骨小梁数量均高于模型组(P=0.000,P=0.002,P=0.000;P=0.000,P=0.007,P=0.014),骨小梁分离度均低于模型组(P=0.000,P=0.000)。WBVT组大鼠的股骨头骨体积分数、骨小梁厚度、骨小梁数量、骨小梁分离度与Yoda1组的差异均无统计学意义(P=0.194,P=0.223,P=0.332,P=0.071)。WBVT联合GsMTx4组大鼠的股骨头骨体积分数、骨小梁厚度、骨小梁数量均低于WBVT组(P=0.002,P=0.021,P=0.000),骨小梁分离度高于WBVT组(P=0.000)。(3)大鼠股骨头内Piezo1、BMP2、Runx2、HIF-1α、VEGF蛋白表达量检测结果。WBVT组和Yoda1组大鼠股骨头内Piezo1、BMP2、Runx2、HIF-1α、VEGF蛋白表达量与空白组的差异均无统计学意义(P=0.061,P=0.122,P=0.773,P=0.814,P=0.991;P=0.112,P=0.071,P=0.955,P=0.749,P=0.915)。模型组和WBVT联合GsMTx4组大鼠股骨头内Piezo1、BMP2、Runx2、HIF-1α、VEGF蛋白表达量均低于空白组(P=0.000,P=0.000,P=0.000,P=0.000,P=0.000;P=0.000,P=0.000,P=0.000,P=0.000,P=0.000)。WBVT组和Yoda1组大鼠股骨头内Piezo1、BMP2、Runx2、HIF-1α、VEGF蛋白表达量均高于模型组(P=0.000,P=0.000,P=0.000,P=0.000,P=0.000;P=0.000,P=0.000,P=0.000,P=0.000,P=0.000)。WBVT组大鼠股骨头内Piezo1、BMP2、Runx2、HIF-1α、VEGF蛋白表达量与Yoda1组的差异均无统计学意义(P=0.962,P=0.179,P=0.214,P=0.990,P=0.975)。WBVT联合GsMTx4组大鼠股骨头内Piezo1、BMP2、Runx2、HIF-1α、VEGF蛋白表达量均低于WBVT组(P=0.000,P=0.000,P=0.000,P=0.000,P=0.000)。(4)大鼠股骨头内CD31/EMCN蛋白表达量检测结果。模型组和WBVT联合GsMTx4组大鼠股骨头内CD31/EMCN表达量均低于空白组(P=0.000,P=0.000)。WBVT组和Yoda1组大鼠股骨头内CD31/EMCN表达量与空白组的差异均无统计学意义(P=0.412,P=0.991)。WBVT组和Yoda1组大鼠股骨头内CD31/EMCN表达量均高于模型组(P=0.000,P=0.000)。WBVT联合GsMTx4组大鼠股骨头内CD31/EMCN表达量低于WBVT组(P=0.000)。结论:WBVT可以促进股骨头坏死组织修复,其作用机制可能与上调Piezo1蛋白的表达影响HIF-1α/VEGF轴,进而促进股骨头内H型血管的生成、改善股骨头血供有关。