In the heterogeneous reservoirs,CO_(2) flooding easily leads to CO_(2) gas channeling,which can seriously affect sweeping efficiency and reduce oil recovery.After thoroughly investigating the advantages and shortcomin...In the heterogeneous reservoirs,CO_(2) flooding easily leads to CO_(2) gas channeling,which can seriously affect sweeping efficiency and reduce oil recovery.After thoroughly investigating the advantages and shortcomings of various CO_(2) plugging technologies,this paper focuses on the feasibility of improving conventional water-alternating gas(WAG)through CO_(2)-responsive gel materials.Based on the different chemical reaction mechanisms between the unique chemical structure and CO_(2),changes in the material’s physical and chemical properties can respond to CO_(2).The feasibility of utilizing these property changes for CO_(2)-responsive plugging is explored.Various CO_(2)-responsive gels and gel nanoparticles have been extensively researched in different fields,such as energy,medicine,and biology.This paper surveys the molecular structures,chemical compositions,response mechanisms,and changes of these CO_(2)-responsive gels,aiming to draw insights into the carbon dioxide-enhanced oil recovery(CO_(2)-EOR)field.Finally,the key issues and future development direction of CO_(2)-responsive plugging gels were analyzed.展开更多
An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in...An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in which both the access point(AP)and the vehicle are equipped with large antenna arrays and employ hybrid analog and digital beamforming structures to compensate the path loss,meanwhile compromise between hardware complexity and system performance.Based on the sparse scattering nature of the mmWave channel,the received signal at the AP is organized to a four-order tensor by the introduced novel frame structure.A CANDECOMP/PARAFAC(CP)decomposition-based method is proposed for time-varying channel parameter extraction,including angles of departure/arrival(AoDs/AoAs),Doppler shift,time delay and path gain.Then leveraging the estimates of channel parameters,a nonlinear weighted least-square problem is proposed to recover the location accurately,heading and velocity of vehicles.Simulation results show that the proposed methods are effective and efficient in time-varying channel estimation and vehicle sensing in mmWave MIMOOFDM V2I systems.展开更多
Undesirable gas channeling always occurs along the high-permeability layers in heterogeneous oil reservoirs during water-alternating-CO_(2)(WAG)flooding,and conventional polymer gels used for blocking the“channeling...Undesirable gas channeling always occurs along the high-permeability layers in heterogeneous oil reservoirs during water-alternating-CO_(2)(WAG)flooding,and conventional polymer gels used for blocking the“channeling”paths usually suffer from either low injectivity or poor gelation control.Herein,we for the first time developed an in-situ high-pressure CO_(2)-triggered gel system based on a smart surfactant,N-erucamidopropyl-N,N-dimethylamine(UC22AMPM),which was introduced into the aqueous slugs to control gas channeling inWAG processes.The water-like,low-viscosity UC22AMPM brine solution can be thickened by high-pressure CO_(2) owing to the formation of wormlike micelles(WLMs),as well as their growth and shear-induced structure buildup under shear flow.The thickening power can be further potentiated by the generation of denser WLMs resulting from either surfactant concentration augmentation or a certain range of heating,and can be impaired via pressurization above the critical pressure of CO_(2) because of its soaring solvent power.Core flooding tests using heterogeneous cores demonstrated that gas channeling was alleviated by plugging of high-capacity channels due to the in-situ gelation of UC22AMPM slugs upon their reaction with the pre-or post-injected CO_(2) slugs under shear flow,thereupon driving chase fluids into unrecovered low-permeability areas and producing an 8.0% higher oil recovery factor than the conventional WAG mode.This smart surfactant enabled high injectivity and satisfactory gelation control,attributable to low initial viscosity and the combined properties of one component and CO_(2)-triggered gelation,respectively.This work could provide a guide towards designing gels for reducing CO_(2) spillover and reinforcing the CO_(2) sequestration effect during CO_(2) enhanced oil recovery processes.展开更多
In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environ...In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environments.In the proposed sum-of-sinusoids(SoS)channel model,the waves that emerge from the transmitter undergo line-of-sight(LoS)and non-line-of-sight(NLoS)propagation to the receiver,which makes the model suitable for describing numerous V2X wireless communication scenarios for sixth-generation(6G).We derive expressions for the real and imaginary parts of the complex channel impulse response(CIR),which characterize the physical propagation characteristics of V2X wireless channels.The statistical properties of the real and imaginary parts of the complex CIRs,i.e.,autocorrelation functions(ACFs),Doppler power spectral densities(PSDs),cross-correlation functions(CCFs),and variances of ACFs and CCFs,are derived and discussed.Simulation results are generated and match those predicted by the underlying theory,demonstrating the accuracy of our derivation and analysis.The proposed framework and underlying theory arise as an efficient tool to investigate the statistical properties of 6G MIMO V2X communication systems.展开更多
Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and...Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and then a constrained condition is configured.Traffic signals are further employed to estimate the channel vector based on the constrained leastsquares criterion. We use the iterative least squares with projection (ILSP) algorithm initializedby the pilot to get the estimation. The accuracy of channel estimation and symbol detection can beprogressively increased through the iteration procedure of the ILSP algorithm. Simulation resultsdemonstrate that the proposed algorithm improves the system performance effectively compared withthe conventional 2-D RAKE receiver.展开更多
基金Supported by the Open Fund Project of Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(YQZC202105)Yangtze University Student Innovation Program(Yz2022018).
文摘In the heterogeneous reservoirs,CO_(2) flooding easily leads to CO_(2) gas channeling,which can seriously affect sweeping efficiency and reduce oil recovery.After thoroughly investigating the advantages and shortcomings of various CO_(2) plugging technologies,this paper focuses on the feasibility of improving conventional water-alternating gas(WAG)through CO_(2)-responsive gel materials.Based on the different chemical reaction mechanisms between the unique chemical structure and CO_(2),changes in the material’s physical and chemical properties can respond to CO_(2).The feasibility of utilizing these property changes for CO_(2)-responsive plugging is explored.Various CO_(2)-responsive gels and gel nanoparticles have been extensively researched in different fields,such as energy,medicine,and biology.This paper surveys the molecular structures,chemical compositions,response mechanisms,and changes of these CO_(2)-responsive gels,aiming to draw insights into the carbon dioxide-enhanced oil recovery(CO_(2)-EOR)field.Finally,the key issues and future development direction of CO_(2)-responsive plugging gels were analyzed.
文摘An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in which both the access point(AP)and the vehicle are equipped with large antenna arrays and employ hybrid analog and digital beamforming structures to compensate the path loss,meanwhile compromise between hardware complexity and system performance.Based on the sparse scattering nature of the mmWave channel,the received signal at the AP is organized to a four-order tensor by the introduced novel frame structure.A CANDECOMP/PARAFAC(CP)decomposition-based method is proposed for time-varying channel parameter extraction,including angles of departure/arrival(AoDs/AoAs),Doppler shift,time delay and path gain.Then leveraging the estimates of channel parameters,a nonlinear weighted least-square problem is proposed to recover the location accurately,heading and velocity of vehicles.Simulation results show that the proposed methods are effective and efficient in time-varying channel estimation and vehicle sensing in mmWave MIMOOFDM V2I systems.
基金Financial support from the Natural Science Foundation of Sichuan Province(2022NSFSC0030)National Natural Science Foundation of China(U1762218)is gratefully acknowledged.
文摘Undesirable gas channeling always occurs along the high-permeability layers in heterogeneous oil reservoirs during water-alternating-CO_(2)(WAG)flooding,and conventional polymer gels used for blocking the“channeling”paths usually suffer from either low injectivity or poor gelation control.Herein,we for the first time developed an in-situ high-pressure CO_(2)-triggered gel system based on a smart surfactant,N-erucamidopropyl-N,N-dimethylamine(UC22AMPM),which was introduced into the aqueous slugs to control gas channeling inWAG processes.The water-like,low-viscosity UC22AMPM brine solution can be thickened by high-pressure CO_(2) owing to the formation of wormlike micelles(WLMs),as well as their growth and shear-induced structure buildup under shear flow.The thickening power can be further potentiated by the generation of denser WLMs resulting from either surfactant concentration augmentation or a certain range of heating,and can be impaired via pressurization above the critical pressure of CO_(2) because of its soaring solvent power.Core flooding tests using heterogeneous cores demonstrated that gas channeling was alleviated by plugging of high-capacity channels due to the in-situ gelation of UC22AMPM slugs upon their reaction with the pre-or post-injected CO_(2) slugs under shear flow,thereupon driving chase fluids into unrecovered low-permeability areas and producing an 8.0% higher oil recovery factor than the conventional WAG mode.This smart surfactant enabled high injectivity and satisfactory gelation control,attributable to low initial viscosity and the combined properties of one component and CO_(2)-triggered gelation,respectively.This work could provide a guide towards designing gels for reducing CO_(2) spillover and reinforcing the CO_(2) sequestration effect during CO_(2) enhanced oil recovery processes.
基金supported by National Natural Science Foundation of China(NSFC)(No.62101274 and 62101275)Natural Science Foundation of Jiangsu Province(BK20210640)Open Research Fund of National Mobile Communications Research Laboratory Southeast University under Grant 2021D03。
文摘In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environments.In the proposed sum-of-sinusoids(SoS)channel model,the waves that emerge from the transmitter undergo line-of-sight(LoS)and non-line-of-sight(NLoS)propagation to the receiver,which makes the model suitable for describing numerous V2X wireless communication scenarios for sixth-generation(6G).We derive expressions for the real and imaginary parts of the complex channel impulse response(CIR),which characterize the physical propagation characteristics of V2X wireless channels.The statistical properties of the real and imaginary parts of the complex CIRs,i.e.,autocorrelation functions(ACFs),Doppler power spectral densities(PSDs),cross-correlation functions(CCFs),and variances of ACFs and CCFs,are derived and discussed.Simulation results are generated and match those predicted by the underlying theory,demonstrating the accuracy of our derivation and analysis.The proposed framework and underlying theory arise as an efficient tool to investigate the statistical properties of 6G MIMO V2X communication systems.
基金The National Hi-Tech Development Plan (863-317-03-01-02-04-20).
文摘Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and then a constrained condition is configured.Traffic signals are further employed to estimate the channel vector based on the constrained leastsquares criterion. We use the iterative least squares with projection (ILSP) algorithm initializedby the pilot to get the estimation. The accuracy of channel estimation and symbol detection can beprogressively increased through the iteration procedure of the ILSP algorithm. Simulation resultsdemonstrate that the proposed algorithm improves the system performance effectively compared withthe conventional 2-D RAKE receiver.