期刊文献+
共找到746篇文章
< 1 2 38 >
每页显示 20 50 100
COUPLED ANALYSIS FOR THE HARVESTING STRUCTURE AND THE MODULATING CIRCUIT IN A PIEZOELECTRIC BIMORPH ENERGY HARVESTER 被引量:8
1
作者 Yuantai Hu Ting Hu Qing Jiang 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第4期296-308,共13页
The authors analyze a piezoelectric energy harvester as an electro-mechanically coupled system. The energy harvester consists of a piezoelectric bimorph with a concentrated mass attached at one end, called the harvest... The authors analyze a piezoelectric energy harvester as an electro-mechanically coupled system. The energy harvester consists of a piezoelectric bimorph with a concentrated mass attached at one end, called the harvesting structure, an electric circuit for energy storage, and a rectifier that converts the AC output of the harvesting structure into a DC input for the storage circuit. The piezoelectric bimorph is assumed to be driven into flexural vibration by an ambient acoustic source to convert the mechanical energies into electric energies. The analysis indicates that the performance of this harvester, measured by the power density, is characterized by three important non-dimensional parameters, i.e., the non-dimensional inductance of the storage circuit, the non-dimensional aspect ratio (length/thickness) and the non-dimensional end mass of the harvesting structure. The numerical results show that: (1) the power density can be optimized by varying the non-dimensional inductance for each fixed non-dimensional aspect ratio with a fixed non-dimensional end mass; and (2) for a fixed non-dimensional inductance, the power density is maximized if the non-dimensional aspect ratio and the non-dimensional end mass are so chosen that the harvesting structure, consisting of both the piezoelectric bimorph and the end mass attached, resonates at the frequency of the ambient acoustic source. 展开更多
关键词 energy harvester piezoelectric bimorph harvesting structure RLC modulatingcircuit coupled interaction power density
下载PDF
Modeling and analysis of piezoelectric beam with periodically variable cross-sections for vibration energy harvesting 被引量:7
2
作者 M.HAJHOSSEINI M.RAFEEYAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第8期1053-1066,共14页
A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigate... A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight. 展开更多
关键词 vibration energy harvesting piezoelectric cantilever beam periodically variable cross-section vibration band gap forced vibration analysis generalized differential quadrature rule (GDQR)
下载PDF
Harvesting Energy from Asphalt Pavement by Piezoelectric Generator 被引量:3
3
作者 赵鸿铎 TAO Yujie +1 位作者 NIU Yanliang LING Jianming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第5期933-937,共5页
This paper presents the way to harvest mechanical energy from asphalt pavement by piezoelectric generator. Results show that the potential energy in asphalt pavement can be up to 150 kW/h per lane per kilometre. Part ... This paper presents the way to harvest mechanical energy from asphalt pavement by piezoelectric generator. Results show that the potential energy in asphalt pavement can be up to 150 kW/h per lane per kilometre. Part of the mechanical energy can be harvested by piezoelectric transducers. The performance of seven typical transducers is examined through finite element analysis. Results show that PZT piles and multilayer, cymbal and bridge can work in asphalt pavement environment. PZT piles and multilayer have higher energy converting rate, However, the total harvested energy is small if these transducers are embedded directly in pavement. A prototype pavement generator is developed using PZT piles to increase the harvested energy. The generator can harvest more than 50 kW/h energy from the pavement under heavy traffic. 8-16 PZT piles are recommended for one generator. Round shape is suggested for the PZT piles to reduce the concentration of stress. And multilayer structure is recommended for PZT piles to decrease the electric potential of generator. The generator can be extended as sensor in the asphalt pavement, which can be used to monitor the traffic, pavement stress and temperature. 展开更多
关键词 asphalt pavement energy harvesting piezoelectric generator finite element analysis
下载PDF
Complete Charging for Piezoelectric Energy Harvesting System 被引量:2
4
作者 樊康旗 徐春辉 王卫东 《Transactions of Tianjin University》 EI CAS 2014年第6期407-414,共8页
Under an in-phase assumption, the complete charging for an energy harvesting system is studied, which consists of a piezoelectric energy harvester(PEH), a bridge rectifier, a filter capacitor, a switch, a controller a... Under an in-phase assumption, the complete charging for an energy harvesting system is studied, which consists of a piezoelectric energy harvester(PEH), a bridge rectifier, a filter capacitor, a switch, a controller and a rechargeable battery. For the transient charging, the results indicate that the voltage across the filter capacitor increases as the charging proceeds, which is consistent with that reported in the literature. However, a new finding shows that the charging rate and energy harvesting efficiency decrease over time after their respective peak values are acquired.For the steady-state charging, the results reveal that the energy harvesting efficiency can be adjusted by altering the critical charging voltage that controls the transition of the system. The optimal energy harvesting efficiency is limited by the optimal efficiency of the transient charging. Finally, the relationship between the critical charging voltage and the equivalent resistance of the controller and rechargeable battery is established explicitly. 展开更多
关键词 energy harvesting mechanical vibration piezoelectric energy HARVESTER CHARGING rate energy harvestingefficiency
下载PDF
Piezoelectric energy harvesting from morphing wing motions for micro air vehicles 被引量:2
5
作者 Abdessattar Abdelkefi Mehdi Ghommem 《Theoretical & Applied Mechanics Letters》 CAS 2013年第5期69-72,共4页
Wing flapping and morphing can be very beneficial to managing the weight of micro air vehicles through coupling the aerodynamic forces with stability and control. In this letter, harvesting energy from the wing morphi... Wing flapping and morphing can be very beneficial to managing the weight of micro air vehicles through coupling the aerodynamic forces with stability and control. In this letter, harvesting energy from the wing morphing is studied to power cameras, sensors, or communication devices of micro air vehicles and to aid in the management of their power. The aerodynamic loads on flapping wings are simulated using a three-dimensional unsteady vortex lattice method. Active wing shape morphing is considered to enhance the performance of the flapping motion. A gradient-based optimization algorithm is used to pinpoint the optimal kinematics maximizing the propellent efficiency. To benefit from the wing deformation, we place piezoelectric layers near the wing roots. Gauss law is used to estimate the electrical harvested power. We demonstrate that enough power can be generated to operate a camera. Numerical analysis shows the feasibility of exploiting wing morphing to harvest energy and improving the design and performance of micro air vehicles. 展开更多
关键词 energy harvesting piezoelectric material micro air vehicles wing morphing
下载PDF
Design of piezoelectric energy harvesting devices subjected to broadband random vibrations by applying topology optimization 被引量:6
6
作者 Zhe-Qi Lin Hae Chang Gea Shu-Tian Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第5期730-737,共8页
Converting ambient vibration energy into electrical energy by using piezoelectric energy harvester has attracted a lot of interest in the past few years.In this paper,a topology optimization based method is applied to... Converting ambient vibration energy into electrical energy by using piezoelectric energy harvester has attracted a lot of interest in the past few years.In this paper,a topology optimization based method is applied to simultaneously determine the optimal layout of the piezoelectric energy harvesting devices and the optimal position of the mass loading.The objective function is to maximize the energy harvesting performance over a range of vibration frequencies.Pseudo excitation method (PEM) is adopted to analyze structural stationary random responses,and sensitivity analysis is then performed by using the adjoint method.Numerical examples are presented to demonstrate the validity of the proposed approach. 展开更多
关键词 Topology optimization · energy harvesting · piezoelectric material ··
下载PDF
A review of nonlinear piezoelectric energy harvesting interface circuits in discrete components 被引量:2
7
作者 Bin ZHANG Hongsheng LIU +1 位作者 Shengxi ZHOU Jun GAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第7期1001-1026,共26页
Piezoelectric energy harvesting is considered as an ideal power resource for low-power consumption gadgets in vibrational environments.The energy extraction efficiency depends highly on the interface circuit,and shoul... Piezoelectric energy harvesting is considered as an ideal power resource for low-power consumption gadgets in vibrational environments.The energy extraction efficiency depends highly on the interface circuit,and should be highly improved to meet the power requirements.The nonlinear interface circuits in discrete components have been extensively explored and developed with the advantages of easy implementation,stable operation,high efficiency,and low cost.This paper reviews the state-of-the-art progress of nonlinear piezoelectric energy harvesting interface circuits in discrete components.First,the working principles and the advantages/disadvantages of four classical interface circuits are described.Then,the improved circuits based on the four typical circuits and other types of circuits are introduced in detail,and the advantages/disadvantages,output power,efficiency,energy consumption,and practicability of these circuits are analyzed.Finally,the future development trends of nonlinear piezoelectric energy harvesting circuits,e.g.,self-powered extraction,low-power consumption,and broadband characteristic,are predicted. 展开更多
关键词 piezoelectric NONLINEAR energy harvesting discrete component interface circuit
下载PDF
Multi-Direction Piezoelectric Energy Harvesting Techniques 被引量:2
8
作者 Chunhua Sun Guangqing Shang 《Journal of Power and Energy Engineering》 2019年第9期52-59,共8页
With the development of portable and self-powering electronic devices, micro-electromechanical system (MEMS) and wireless sensor networks, research on piezoelectric energy harvesting techniques has been paid more and ... With the development of portable and self-powering electronic devices, micro-electromechanical system (MEMS) and wireless sensor networks, research on piezoelectric energy harvesting techniques has been paid more and more attention. To enhance the ambient adaptability and improve the generating efficiency, the multi-directional piezoelectric energy harvesting techniques turns to be a research hotspot. The current status of the multi-directional piezoelectric energy harvesting techniques was firstly reviewed. The characteristics of existed multi-directional piezoelectric harvester were then analyzed. An improved structure of multi-directional piezoelectric harvester was finally proposed. The multi-directional piezoelectric energy harvester has a good prospect in miniaturization, more sensitive to vibration directions and better energy efficiency. 展开更多
关键词 piezoelectric Effect piezoelectric energy HARVESTER Multi-Directional MEMS
下载PDF
Design and dynamic analysis of integrated architecture for vibration energy harvesting including piezoelectric frame and mechanical amplifier 被引量:2
9
作者 Xiangjian DUAN Dongxing CAO +1 位作者 Xiaoguang LP Yongjun SHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第6期755-770,共16页
Vibration energy harvesters(VEHs) can transform ambient vibration energy to electricity and have been widely investigated as promising self-powered devices for wireless sensor networks, wearable sensors, and applicati... Vibration energy harvesters(VEHs) can transform ambient vibration energy to electricity and have been widely investigated as promising self-powered devices for wireless sensor networks, wearable sensors, and applications of a micro-electro-mechanical system(MEMS). However, the ambient vibration is always too weak to hinder the high energy conversion efficiency. In this paper, the integrated frame composed of piezoelectric beams and mechanical amplifiers is proposed to improve the energy conversion efficiency of a VEH. First, the initial structures of a piezoelectric frame(PF) and an amplification frame(AF) are designed. The dynamic model is then established to analyze the influence of key structural parameters on the mechanical amplification factor. Finite element simulation is conducted to study the energy harvesting performance, where the stiffness characteristics and power output in the cases of series and parallel load resistance are discussed in detail. Furthermore, piezoelectric beams with variable cross-sections are introduced to optimize and improve the energy harvesting efficiency. Advantages of the PF with the AF are illustrated by comparison with conventional piezoelectric cantilever beams. The results show that the proposed integrated VEH has a good mechanical amplification capability and is more suitable for low-frequency vibration conditions. 展开更多
关键词 vibration energy harvesting mechanical amplifier piezoelectric frame(PF) amplification frame(AF) variable cross-section beam
下载PDF
Pedestrian walking characteristics at stairs according to width change for application of piezoelectric energy harvesting 被引量:1
10
作者 YI Mi-hui NA Wook-jung +1 位作者 HONG Won-hwa JEON Gyu-yeob 《Journal of Central South University》 SCIE EI CAS 2012年第3期764-769,共6页
This work aims at finding pedestrian walking characteristics at U-type stairs according to the width change of stairs and appropriate spot for installing piezoelectric energy harvesting.The number of pedestrian at two... This work aims at finding pedestrian walking characteristics at U-type stairs according to the width change of stairs and appropriate spot for installing piezoelectric energy harvesting.The number of pedestrian at two kinds of stairs(one is stairs with 1.5 m in width and the other is stairs with 3 m in width) was estimated by calculating the number of steps on the stairs by a zone which is divided into 30 cm×30 cm.The result shows high density in the middle in the case of narrow stairs but traffic is concentrated on stair inside(pillar side) in stairs with large width.In conclusion,the location for installation of piezoelectric energy harvesting system should be considered differently on stairs width and the number of installation depends on total expected traffic and the expected traffic for a device. 展开更多
关键词 piezoelectric energy harvesting pedestrian walking human power traffic distribution
下载PDF
Recent advancement of flow-induced piezoelectric vibration energy harvesting techniques:principles,structures,and nonlinear designs 被引量:1
11
作者 Dongxing CAO Junru WANG +2 位作者 Xiangying GUO S.K.LAI Yongjun SHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第7期959-978,共20页
Energy harvesting induced from flowing fluids(e.g.,air and water flows)is a well-known process,which can be regarded as a sustainable and renewable energy source.In addition to traditional high-efficiency devices(e.g.... Energy harvesting induced from flowing fluids(e.g.,air and water flows)is a well-known process,which can be regarded as a sustainable and renewable energy source.In addition to traditional high-efficiency devices(e.g.,turbines and watermills),the micro-power extracting technologies based on the flow-induced vibration(FIV)effect have sparked great concerns by virtue of their prospective applications as a self-power source for the microelectronic devices in recent years.This article aims to conduct a comprehensive review for the FIV working principle and their potential applications for energy harvesting.First,various classifications of the FIV effect for energy harvesting are briefly introduced,such as vortex-induced vibration(VIV),galloping,flutter,and wake-induced vibration(WIV).Next,the development of FIV energy harvesting techniques is reviewed to discuss the research works in the past three years.The application of hybrid FIV energy harvesting techniques that can enhance the harvesting performance is also presented.Furthermore,the nonlinear designs of FIV-based energy harvesters are reported in this study,e.g.,multi-stability and limit-cycle oscillation(LCO)phenomena.Moreover,advanced FIV-based energy harvesting studies for fluid engineering applications are briefly mentioned.Finally,conclusions and future outlook are summarized. 展开更多
关键词 vibration-driven energy harvesting flow-induced vibration(FIV) piezoelectric approach nonlinear design
下载PDF
Design, Modeling and Analysis of Implementing a Multilayer Piezoelectric Vibration Energy Harvesting Mechanism in the Vehicle Suspension 被引量:2
12
作者 Wiwiek Hendrowati Harus Laksana Guntur I. Nyoman Sutantra 《Engineering(科研)》 2012年第11期728-738,共11页
This paper deals with the design, modeling and analysis of implementing a Multilayer Piezoelectric Vibration Energy Harvesting (ML PZT VEH) Mechanism in the vehicle suspension. The principle of work of the proposed ML... This paper deals with the design, modeling and analysis of implementing a Multilayer Piezoelectric Vibration Energy Harvesting (ML PZT VEH) Mechanism in the vehicle suspension. The principle of work of the proposed ML PZT VEH mechanism is reducing the relative motion of the suspension, amplifying the applied force to the PZT by a specific design of mechanism and combining a single layer PZT into multilayer PZT to increase the produced electricity. To maintain the performance of suspension as the original suspension, the ML PZT VEH mechanism is mounted in series with the spring of the suspension. The proposed ML PZT VEH mechanism and its implementation to the vehicle suspension were mathematically modeled. Responses of the vehicle before and after implementing ML PZT VEH mechanism were simulated. The results show the proposed mechanism can produce output voltage of 2.75 and power of 7.17 times bigger than direct mounting to the vehicle suspension. And the simulation result shows that mounting ML PZT VEH mechanism in series with the spring of the vehicle suspension does not change the performance of suspension. 展开更多
关键词 Vibration energy harvesting MULTILAYER piezoelectric Force Amplifying MECHANISM Vehicle SUSPENSION
下载PDF
Nonlinear energy harvesting from vibratory disc-shaped piezoelectric laminates 被引量:1
13
作者 Abdolreza Pasharavesh Reza Moheimani Hamid Dalir 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第4期253-261,共9页
Implementing resonators with geometrical nonlinearities in vibrational energy harvesting systems leads to considerable enhancement of their operational bandwidths. This advantage of nonlinear devices in comparison to ... Implementing resonators with geometrical nonlinearities in vibrational energy harvesting systems leads to considerable enhancement of their operational bandwidths. This advantage of nonlinear devices in comparison to their linear counterparts is much more obvious especially at small-scale where transition to nonlinear regime of vibration occurs at moderately small amplitudes of the base excitation. In this paper the nonlinear behavior of a disc-shaped piezoelectric laminated harvester considering midplane-stretching effect is investigated. Extended Hamilton’s principle is exploited to extract electromechanically coupled governing partial differential equations of the system. The equations are firstly order-reduced and then analytically solved implementing perturbation method of multiple scales. A nonlinear finite element method(FEM) simulation of the system is performed additionally for the purpose of verification which shows agreement with the analytical solution to a large extent. The frequency response of the output power at primary resonance of the harvester is calculated to investigate the effect of nonlinearity on the system performance. Effect of various parameters including mechanical quality factor, external load impedance and base excitation amplitude on the behavior of the system are studied. Findings indicate that in the nonlinear regime both output power and operational bandwidth of the harvester will be enhanced by increasing the mechanical quality factor which can be considered as a significant advantage in comparison to linear harvesters in which these two factors vary in opposite ways as quality factor is changed. 展开更多
关键词 Nonlinear resonator Coupled electromechanical modeling energy harvesting piezoelectric laminate
下载PDF
Parameters Optimization for Piezoelectric Harvesting Energy from Pavement Based on Taguchi’s Orthogonal Experiment Design 被引量:1
14
作者 Chunhua Sun Hongbing Wang +1 位作者 Guangqing Shang Jianhong Du 《World Journal of Engineering and Technology》 2015年第4期149-157,共9页
To effectively harvest vibration energy from pavement without affecting driving comfort and safety, parameter optimization was done with the orthogonal experiment design and the finite element analysis. L16(44) Taguch... To effectively harvest vibration energy from pavement without affecting driving comfort and safety, parameter optimization was done with the orthogonal experiment design and the finite element analysis. L16(44) Taguchi’s orthogonal experiments were carried out with planted depth, PZT material, PZT diameter and thickness as optimization parameters and with open voltage and pavement displacement as optimization objectives. The experiment results were obtained via the finite element method. By using range analysis method, the dominance degree of the influencing factors and the optimum condition was obtained for the two objectives, respectively. Further, the multi-objective optimization was performed based on a weight grade method. The combined optimum conditions in order of their dominance degree are PZT diameter 35 mm, PZT thickness 6 mm, planted depth 50 mm and material PZT4. The validity of optimization scheme was confirmed. 展开更多
关键词 piezoelectric energy harvesting PAVEMENT Taguchi’s ORTHOGONAL Experiment FINITE Element Method
下载PDF
Energy Harvesting Strategy Using Piezoelectric Element Driven by Vibration Method 被引量:1
15
作者 Dong-Gun Kim So-Nam Yun +1 位作者 Young-Bog Ham Jung-Ho Park 《Wireless Sensor Network》 2010年第2期100-107,共8页
This study demonstrates a method for harvesting the electrical power by the piezoelectric actuator from vibration energy. This paper presents the energy harvesting technique using the piezoelectric element of a bimorp... This study demonstrates a method for harvesting the electrical power by the piezoelectric actuator from vibration energy. This paper presents the energy harvesting technique using the piezoelectric element of a bimorph type driven by a geared motor and a vibrator. The geared motor is a type of PWM controlled device that is a combination of an oval shape cam with five gears and a speed controller. When using the geared motor, the piezoelectric element is size of 36L×13W×0.6H. The output voltage characteristics of the piezoelectric element were investigated in terms of the displacement and vibration. When using the vibrator, the electric power harvesting is based on piezoelectric effect and piezoelectric vibrator consists of a magnetic type oscillator, a cantilever, a bimorph actuator and controllers. Low frequency operating technique using piezoelectric vibrator is very important because normal vibration sources in the environment such as building, human body, windmill and ship have low frequency characteristics. We can know from this study results that there are many energy sources such as vibration, wind power and wave power. Also, these can be used to the energy harvesting system using smart device like piezoelectric element. 展开更多
关键词 energy HARVESTER piezoelectric ELEMENT WIND energy Vibration energy USN
下载PDF
Autonomous Wireless Sensors Network Based on Piezoelectric Energy Harvesting 被引量:1
16
作者 Alex Mouapi Nadir Hakem Gilles Y. Delisle 《Open Journal of Antennas and Propagation》 2016年第3期138-157,共20页
Wireless sensor networks (WSNs) offer an attractive solution to many environmental, security and process monitoring. However, their lifetime remains very limited by battery capacity. Through the use of piezoelectric e... Wireless sensor networks (WSNs) offer an attractive solution to many environmental, security and process monitoring. However, their lifetime remains very limited by battery capacity. Through the use of piezoelectric energy harvesting techniques, ambient vibration can be captured and converted into usable electricity to create selfpowering WSN which is not limited by finite battery energy. This paper investigates analytically and experimentally the performance of a WSN powered by a Piezoelectric Energy Harvesting System (PEHS) and a material block-level modeling considering most key energy consumption of a wireless sensor node in a star topology network is proposed. By using real hardware parameters of existing components, the proposed model is used to evaluate the energetic budget of the node. The sensor node performance is evaluated regarding transmit packet size, duty cycle and the number of nodes that can be deployed. From the spectral properties of the available vibration inside two moving vehicles (automobile and train), the maximal recoverable power for each type of vehicle is estimated. Using a PEHS based on a cantilever beam optimized for low-frequency applications, 6 mW power is recovered in the case of the train while a 12.5 mW power is reached in the case of the automobile. It is observed that the sink may not operate with the recovered energy. However, the sensor node can sense and transmit data with a maximum size of 105.5 kbits when the duty cycle is 4 × 10<sup>-15</sup>. It is also achieved that the node is most effective when the measured physical phenomena vary slowly, such as the variations in temperature due to thermal inertia. Considering an optimized PEHS based on non-linear processing, it is shown that the sink can operate for 190% improvement of the recovered power. 展开更多
关键词 WSN Self-Powering pehS Packet Size Duty Cycle energy harvesting System
下载PDF
Bistable Piezoelectric Flutter Energy Harvesting with Uncertainty 被引量:2
17
作者 Farbod KHOSHNOUD Christopher R.BOWEN Cristinel MARES 《Instrumentation》 2019年第1期2-11,共10页
The analytical formulation of piezoelectric flutter energy harvesting using a bistable material,while considering uncertainties in the model is presented in this paper.Bistable laminates provide the advantage of large... The analytical formulation of piezoelectric flutter energy harvesting using a bistable material,while considering uncertainties in the model is presented in this paper.Bistable laminates provide the advantage of large deflection due to the nonlinear snap-through characteristics when exposed to external loading,and can therefore provide a suitable base for piezoelectric material in energy harvesting applications.A piezoelectric material that is bounded on the surface of bistable laminates,subjected to external loading,generates large strains and hence relatively higher electrical output energy,in comparison with the case where piezoelectric material is bonded on a regular surface,with analogous loading conditions.Although information regarding the external loading,material characteristics of the bistable laminate and the piezoelectric material,boundary conditions,and overall electrical circuit efficiency can be defined for analytical purposes,the exact model of the system is not readily accessible.The unavoidable uncertainties in the material,loading,and efficiency of a complex system call for a probabilistic approach.Hence,this paper provides a formulation that considers uncertainty bounds in obtaining a realistic model.Optimal Uncertainty Quantification(OUQ) is used in this paper,which takes into account uncertainty measures with optimal bounds and incomplete information about the system,as a well-defined optimization problem according to maximum probabilities,subjected to the imposed constraints.The OUQ allows the inspection of the solution for a span of uncertain input parameters,as a reliable and realistic model. 展开更多
关键词 BISTABLE laminates piezoelectric energy harvesting FLUTTER energy harvesting optimal UNCERTAINTY quantification self-powered systems
下载PDF
Design and Modelling of Piezoelectric Road Energy Harvesting 被引量:2
18
作者 Andrew Sherren Kyle Fink +3 位作者 Joshua Eshelman Luay Yassin Taha Sohail Anwar Craig Brennecke 《Open Journal of Energy Efficiency》 2022年第2期24-36,共13页
In recent years, road piezoelectric energy harvesting (RPEH) has attracted great attention from industry and academia, as it can provide power to traffic ancillary facilities and low-power wireless sensor devices to s... In recent years, road piezoelectric energy harvesting (RPEH) has attracted great attention from industry and academia, as it can provide power to traffic ancillary facilities and low-power wireless sensor devices to support car networking and intelligent transportation. The output power of RPEH in a recent research project demonstrated a watt level RPEH. In this proposal, we propose to harvest energy from piezoelectric modules (also called stacks) to power selected highways, tolls, and bridges in Pennsylvania. The project incorporates electrical, mechanical, and civil engineering works. The proposed smart highway RPEH will be conducted using optimization parameters to evaluate the system performance and trade-offs. MATLAB will be used with other optimization solvers in problem modeling and optimization. During this project, an RPEH hardware system will be constructed. The system will include a piezoelectric module, rectifier (AC-DC), Storage battery, data acquisition system (DAQ), and computer. The captured data will be analyzed using MATLAB/Simulink. The results show that optimum harvested parameters were addressed when the thickness is selected as 2 mm. 展开更多
关键词 energy harvesting piezoelectric Harvesters Road Pavement Device Modelling
下载PDF
A Numerical Study on Piezoelectric Energy Harvesting by Combining Transverse Galloping and Parametric Instability Phenomena
19
作者 Guilherme Rosa Franzini Rebeca Caramêz Saraiva Santos Celso Pupo Pesce 《Journal of Marine Science and Application》 CSCD 2017年第4期465-472,共8页
This paper aims to numerically investigate the effects of parametric instability on piezoelectric energy harvesting from the transverse galloping of a square prism. A two degrees-of-freedom reduced-order model for thi... This paper aims to numerically investigate the effects of parametric instability on piezoelectric energy harvesting from the transverse galloping of a square prism. A two degrees-of-freedom reduced-order model for this problem is proposed and numerically integrated. A usual quasi-steady galloping model is applied, where the transverse force coefficient is adopted as a cubic polynomial function with respect to the angle of attack. Time-histories of nondimensional prism displacement, electric voltage and power dissipated at both the dashpot and the electrical resistance are obtained as functions of the reduced velocity. Both, oscillation amplitude and electric voltage, increased with the reduced velocity for all parametric excitation conditions tested. For low values of reduced velocity, 2:1 parametric excitation enhances the electric voltage. On the other hand, for higher reduced velocities, a 1:1 parametric excitation(i.e., the same as the natural frequency) enhances both oscillation amplitude and electric voltage. It has been also found that, depending on the parametric excitation frequency, the harvested electrical power can be amplified in 70% when compared to the case under no parametric excitation. 展开更多
关键词 TRANSVERSE GALLOPING energy harvesting piezoelectricITY PARAMETRIC INSTABILITY numerical simulations
下载PDF
Harvesting base vibration energy by a piezoelectric inverted beam with pendulum
20
作者 Jia-Nan Pan Wei-Yang Qin +1 位作者 Wang-Zheng Deng Hong-Lei Zhou 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期594-607,共14页
We proposed a two-degrees-of-freedom inverted piezoelectric beam with pendulum to promote the performance of vibration energy harvesting. This configuration is composed of an inverted elastic beam and a pendulum attac... We proposed a two-degrees-of-freedom inverted piezoelectric beam with pendulum to promote the performance of vibration energy harvesting. This configuration is composed of an inverted elastic beam and a pendulum attached to its free end. The electromechanical equations governing the nonlinear system were derived. The harmonic balance method(HBM)is applied to solve the equation and the results prove that there exists a 1:3 super-harmonic resonance. The simulation results show that owing to the particular nonlinearity, there appears a special bending effect in the amplitude-frequency response, i.e., bending right for the first natural frequency and left for the second natural frequency, which is beneficial for harvesting vibration energy. The HBM results are verified by the entity simulations. Furthermore, over a relatively wide range of power spectral density, it could reach a dense jumping and give a dense high pulse voltage. 展开更多
关键词 stochastic EXCITATION energy harvesting INVERTED piezoelectric BEAM PENDULUM bi-stable state
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部