This paper presents a numerical simulation study on electromechanical impedance technique for structural damage identification.The basic principle of impedance based damage detection is structural impedance will vary ...This paper presents a numerical simulation study on electromechanical impedance technique for structural damage identification.The basic principle of impedance based damage detection is structural impedance will vary with the occurrence and development of structural damage,which can be measured from electromechanical admittance curves acquired from PZT patches.Therefore,structure damage can be identified from the electromechanical admittance measurements.In this study,a model based method that can identify both location and severity of structural damage through the minimization of the deviations between structural impedance curves and numerically computed response is developed.The numerical model is set up using the spectral element method,which is promised to be of high numerical efficiency and computational accuracy in the high frequency range.An optimization procedure is then formulated to estimate the property change of structural elements from the electric admittance measurement of PZT patches.A case study on a pin-pin bar is conducted to investigate the feasibility of the proposed method.The results show that the presented method can accurately identify bar damage location and severity even when the measurements are polluted by 5%noise.展开更多
Calcium phosphate film was prepared by electrochemical deposition technology. Subsequently, the alkaline treatment process of calcium phosphate film in 0.1 mol/L NaOH solution was monitored on real time by the piezoel...Calcium phosphate film was prepared by electrochemical deposition technology. Subsequently, the alkaline treatment process of calcium phosphate film in 0.1 mol/L NaOH solution was monitored on real time by the piezoelectric quartz crystal impedance (PQCI) technique. The variations of morphology and composition for the alkaline treatment products were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The dynamic variations of calcium phosphate can be characterized by the change of equivalent circuit parameters. The results show that the forming process of hydroxyapatite (HA) is composed of three stages: (1) acidic calcium phosphate dissolution; (2) phase transformation; and (3) HA formation. Furthermore, the correlative kinetic equations and parameters are obtained by fitting the static capacitance (C8)-time curves.展开更多
Piezoelectric bar-shaped resonators were proposed to act as hardness sensors in the 1960 s and stiffness sensors in the 1990 s based on the contact impedance method.In this work, we point out that both multilayer and ...Piezoelectric bar-shaped resonators were proposed to act as hardness sensors in the 1960 s and stiffness sensors in the 1990 s based on the contact impedance method.In this work, we point out that both multilayer and unimorph(or bimorph) piezoelectric actuators could act as stiffness/modulus sensors based on the principle of mechanical contact resonance. First, the practical design and the performance of a piezoelectric unimorph actuator–based stiffness sensor were presented. Then the working principle of piezoelectric multilayer actuator–based stiffness sensors was given and verified by numerical investigation. It was found that for these two types of resonance-based sensors, the shift of the resonance frequency due to contact is always positive, which is different from that of the contact impedance method. Further comparative sensitivity study indicated that the unimorph actuator–based stiffness sensor is very suitable for measurement on soft materials, whereas the multilayer actuator–based sensor is more suitable for hard materials.展开更多
The piezoelectric quartz crystal (PQC) impedance analyzer was used to monitor in situ the generation of monodisperse silica particles during the hydrolysis of tetraethyl orthosilicate (TEOS) and their adsorption o...The piezoelectric quartz crystal (PQC) impedance analyzer was used to monitor in situ the generation of monodisperse silica particles during the hydrolysis of tetraethyl orthosilicate (TEOS) and their adsorption onto an Au electrode in alcohol solutions containing water (6-15 mol/L) and ammonia (0 2-2 0 mol/L). The equivalent circuit parameters, the resonance frequencies and the half peak width values of the conductance spectra of the PQC resonance were obtained. The resonant frequency decreased notably while the motional resistance changed very slightly (within 1 Ω) during the hydrolysis reaction, suggesting that the mass effect do^minated the adsorption of generated monodisperse silica particles on the gold electrode in this system. Changes in f 0 indicated that the ammonia concentration affected the hydrolytic reaction obviously, and the influence of water concentration on the reaction was small while the water was significantly excessive. Kinetics of monodisperse silica particle adsorption occurring at the electrode|solution interface was analyzed using a first order reaction scheme. In addition, the electrolyte induced precipitation of the monodisperse silica particles was monitored and discussed. The mean size, the number of adsorbed particles per area and the converge of monodisperse silica particles were obtained from scanning electron microscope (SEM) observations.展开更多
In this work, a separated-electrode piezoelectric sensor(SEPS), constructed by a naked quartz crystal mounted between two electrodes, is reported for applications in a corrosive gaseous phase. The response of SEPS w...In this work, a separated-electrode piezoelectric sensor(SEPS), constructed by a naked quartz crystal mounted between two electrodes, is reported for applications in a corrosive gaseous phase. The response of SEPS was measured by an impedance analysis method. It was shown that SEPS has an excellent frequency stability because its quality factor is in the order of 10^5. The SEPS can be operated even with the electrode gap in air larger than 1 cm. Compared with a conventional quartz crystal microbalance, the resonant frequency of the SEPS is independent of the mass change in the electrode. The SEPS was applied to monitor the adsorption of iodine on quartz surface and zeolitic-imidazolate framework-8(ZIF-8) film as well as in the transfer of iodine between two ZIF-8 films. The SEPS offers the advantages of easy preparation, corrosion-resistant and convenience in combination with mass and optical measurements.展开更多
基金This research was supported by the Rising-star Program of Shanghai Commission of the Science and Technology(No.09QH1402300)the Independent Research Program of State Key Laboratory for Disaster Reduction in Civil Engineering(SLDRCE09-B-15).
文摘This paper presents a numerical simulation study on electromechanical impedance technique for structural damage identification.The basic principle of impedance based damage detection is structural impedance will vary with the occurrence and development of structural damage,which can be measured from electromechanical admittance curves acquired from PZT patches.Therefore,structure damage can be identified from the electromechanical admittance measurements.In this study,a model based method that can identify both location and severity of structural damage through the minimization of the deviations between structural impedance curves and numerically computed response is developed.The numerical model is set up using the spectral element method,which is promised to be of high numerical efficiency and computational accuracy in the high frequency range.An optimization procedure is then formulated to estimate the property change of structural elements from the electric admittance measurement of PZT patches.A case study on a pin-pin bar is conducted to investigate the feasibility of the proposed method.The results show that the presented method can accurately identify bar damage location and severity even when the measurements are polluted by 5%noise.
基金Project(2005CB623901) supported by the Major State Basic Research and Development Program of China
文摘Calcium phosphate film was prepared by electrochemical deposition technology. Subsequently, the alkaline treatment process of calcium phosphate film in 0.1 mol/L NaOH solution was monitored on real time by the piezoelectric quartz crystal impedance (PQCI) technique. The variations of morphology and composition for the alkaline treatment products were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The dynamic variations of calcium phosphate can be characterized by the change of equivalent circuit parameters. The results show that the forming process of hydroxyapatite (HA) is composed of three stages: (1) acidic calcium phosphate dissolution; (2) phase transformation; and (3) HA formation. Furthermore, the correlative kinetic equations and parameters are obtained by fitting the static capacitance (C8)-time curves.
基金financial support of the National Natural Science Foundation of China (Grant11090331)Support from the Chinese National Programs for Scientific Instruments Research and Development (Grant 2012YQ03007502)
文摘Piezoelectric bar-shaped resonators were proposed to act as hardness sensors in the 1960 s and stiffness sensors in the 1990 s based on the contact impedance method.In this work, we point out that both multilayer and unimorph(or bimorph) piezoelectric actuators could act as stiffness/modulus sensors based on the principle of mechanical contact resonance. First, the practical design and the performance of a piezoelectric unimorph actuator–based stiffness sensor were presented. Then the working principle of piezoelectric multilayer actuator–based stiffness sensors was given and verified by numerical investigation. It was found that for these two types of resonance-based sensors, the shift of the resonance frequency due to contact is always positive, which is different from that of the contact impedance method. Further comparative sensitivity study indicated that the unimorph actuator–based stiffness sensor is very suitable for measurement on soft materials, whereas the multilayer actuator–based sensor is more suitable for hard materials.
文摘The piezoelectric quartz crystal (PQC) impedance analyzer was used to monitor in situ the generation of monodisperse silica particles during the hydrolysis of tetraethyl orthosilicate (TEOS) and their adsorption onto an Au electrode in alcohol solutions containing water (6-15 mol/L) and ammonia (0 2-2 0 mol/L). The equivalent circuit parameters, the resonance frequencies and the half peak width values of the conductance spectra of the PQC resonance were obtained. The resonant frequency decreased notably while the motional resistance changed very slightly (within 1 Ω) during the hydrolysis reaction, suggesting that the mass effect do^minated the adsorption of generated monodisperse silica particles on the gold electrode in this system. Changes in f 0 indicated that the ammonia concentration affected the hydrolytic reaction obviously, and the influence of water concentration on the reaction was small while the water was significantly excessive. Kinetics of monodisperse silica particle adsorption occurring at the electrode|solution interface was analyzed using a first order reaction scheme. In addition, the electrolyte induced precipitation of the monodisperse silica particles was monitored and discussed. The mean size, the number of adsorbed particles per area and the converge of monodisperse silica particles were obtained from scanning electron microscope (SEM) observations.
基金financial support by National Natural Science Foundation of China(Nos.21175084,21275091)the Opening Fund of Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research(Hunan Normal University),Ministry of Education(No.KLCBTCMR2001-01)Research Fund for the Doctoral Program of Higher Education of China(No.20113704110003)
文摘In this work, a separated-electrode piezoelectric sensor(SEPS), constructed by a naked quartz crystal mounted between two electrodes, is reported for applications in a corrosive gaseous phase. The response of SEPS was measured by an impedance analysis method. It was shown that SEPS has an excellent frequency stability because its quality factor is in the order of 10^5. The SEPS can be operated even with the electrode gap in air larger than 1 cm. Compared with a conventional quartz crystal microbalance, the resonant frequency of the SEPS is independent of the mass change in the electrode. The SEPS was applied to monitor the adsorption of iodine on quartz surface and zeolitic-imidazolate framework-8(ZIF-8) film as well as in the transfer of iodine between two ZIF-8 films. The SEPS offers the advantages of easy preparation, corrosion-resistant and convenience in combination with mass and optical measurements.