Active vibration control is an effective way of increasing robustness of the design to meet the stringent accuracy requirements for space structures. This paper presents the results of active damping realized by a pie...Active vibration control is an effective way of increasing robustness of the design to meet the stringent accuracy requirements for space structures. This paper presents the results of active damping realized by a piezoelectric active member to control the vibration of a four-bay four-longern aluminum truss structure with cantilever boundary. The active member, which utilizes a piezoelectric actuating unit and an integrated load cell, is designed for vibration control of the space truss structures. Active damping control is realized using direct velocity feedback around the active member. The placement of the active member as one of the most important factor of affecting the control system performance, is also investigated by modal dissipation energy ratio as indicator. The active damping effectiveness is evaluated by comparing the closed-loop response with the open loop response.展开更多
The finite element dynamic model for integrated structures containing distributed piezoelectric sensors and actuators ( S/As ) is formulated with a new piezoelectric plate bending element in this paper. The problem of...The finite element dynamic model for integrated structures containing distributed piezoelectric sensors and actuators ( S/As ) is formulated with a new piezoelectric plate bending element in this paper. The problem of active vibration control and suppression of integrated structures is investigated under constant gain negative velocity feedback control law. A general method for active vibration control and suppression of integrated structures is presented. Finally, numerical example is given to illustrate the validity of the method proposed in this paper.展开更多
An optimal control method based on the minimum energy of the vibration system is proposed for piezoelectric damping control of the reinforced aircraft plate.Subsequently,the dynamic equations of the piezoelectric damp...An optimal control method based on the minimum energy of the vibration system is proposed for piezoelectric damping control of the reinforced aircraft plate.Subsequently,the dynamic equations of the piezoelectric damping reinforced plate system and the state space equations are derived.The method to determine the weight matrix of the system is presented based on the minimum energy of the vibration system.In order to obtain the optimal controller,the control parameters of the feedback controller are obtained by using the optimal method.A piezoelectric vibration optimal control experiment platform is designed to control the vibration of reinforced aircraft plate.The experimental results show that the method has good control performances.展开更多
Presents the study on the optimum location of actuators/sensors for active vibration control in aerospace flexible structures with the performance function first built by maximization of dissipation energy due to cont...Presents the study on the optimum location of actuators/sensors for active vibration control in aerospace flexible structures with the performance function first built by maximization of dissipation energy due to control action and a real coded genetic algorithm then proposed to produce a global optimum solution, and proves the feasibility and advantages of this algorithm with the example of a standard test function and a two collocated actuators/sensors cantilever, and comparing the results with those given in the literatures.展开更多
文摘Active vibration control is an effective way of increasing robustness of the design to meet the stringent accuracy requirements for space structures. This paper presents the results of active damping realized by a piezoelectric active member to control the vibration of a four-bay four-longern aluminum truss structure with cantilever boundary. The active member, which utilizes a piezoelectric actuating unit and an integrated load cell, is designed for vibration control of the space truss structures. Active damping control is realized using direct velocity feedback around the active member. The placement of the active member as one of the most important factor of affecting the control system performance, is also investigated by modal dissipation energy ratio as indicator. The active damping effectiveness is evaluated by comparing the closed-loop response with the open loop response.
文摘The finite element dynamic model for integrated structures containing distributed piezoelectric sensors and actuators ( S/As ) is formulated with a new piezoelectric plate bending element in this paper. The problem of active vibration control and suppression of integrated structures is investigated under constant gain negative velocity feedback control law. A general method for active vibration control and suppression of integrated structures is presented. Finally, numerical example is given to illustrate the validity of the method proposed in this paper.
基金supported by the National Natural Science Foundation of China(5137522811532006)+2 种基金the Fundamental Research Funds for the Central Universities(NE2015101)the Natural Science Foundation of Jiangsu ProvinceChina(BK20130791)
文摘An optimal control method based on the minimum energy of the vibration system is proposed for piezoelectric damping control of the reinforced aircraft plate.Subsequently,the dynamic equations of the piezoelectric damping reinforced plate system and the state space equations are derived.The method to determine the weight matrix of the system is presented based on the minimum energy of the vibration system.In order to obtain the optimal controller,the control parameters of the feedback controller are obtained by using the optimal method.A piezoelectric vibration optimal control experiment platform is designed to control the vibration of reinforced aircraft plate.The experimental results show that the method has good control performances.
文摘Presents the study on the optimum location of actuators/sensors for active vibration control in aerospace flexible structures with the performance function first built by maximization of dissipation energy due to control action and a real coded genetic algorithm then proposed to produce a global optimum solution, and proves the feasibility and advantages of this algorithm with the example of a standard test function and a two collocated actuators/sensors cantilever, and comparing the results with those given in the literatures.