期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Epitaxial Lift-Off of Flexible GaN‑Based HEMT Arrays with Performances Optimization by the Piezotronic Effect 被引量:1
1
作者 Xin Chen Jianqi Dong +6 位作者 Chenguang He Longfei He Zhitao Chen Shuti Li Kang Zhang Xingfu Wang Zhong Lin Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第4期221-233,共13页
High-electron-mobility transistors(HEMTs)are a promising device in the field of radio frequency and wireless communication.However,to unlock the full potential of HEMTs,the fabrication of large-size flexible HEMTs is ... High-electron-mobility transistors(HEMTs)are a promising device in the field of radio frequency and wireless communication.However,to unlock the full potential of HEMTs,the fabrication of large-size flexible HEMTs is required.Herein,a large-sized(>2 cm^(2))of AlGaN/AlN/GaN heterostructure-based HEMTs were successfully stripped from sapphire substrate to a flexible polyethylene terephthalate substrate by an electrochemical lift-off technique.The piezotronic effect was then induced to optimize the electron transport performance by modulating/tuning the physical properties of two-dimensional electron gas(2DEG)and phonons.The saturation current of the flexible HEMT is enhanced by 3.15%under the 0.547%tensile condition,and the thermal degradation of the HEMT was also obviously suppressed under compressive straining.The corresponding electrical performance changes and energy diagrams systematically illustrate the intrinsic mechanism.This work not only provides in-depth understanding of the piezotronic effect in tuning 2DEG and phonon properties in GaN HEMTs,but also demonstrates a low-cost method to optimize its electronic and thermal properties. 展开更多
关键词 AlGaN/AlN/GaN heterojunction Epitaxial lift-off Flexible membrane Two-dimensional electron gas piezotronic effect
下载PDF
Piezotronic effect enhanced Schottky-contact ZnO micro/nanowire humidity sensors 被引量:11
2
作者 Guofeng Hu Ranran Zhou +3 位作者 Ruomeng Yu Lin Dong Caofeng Pan Zhong Lin Wang 《Nano Research》 SCIE EI CAS CSCD 2014年第7期1083-1091,共9页
A ZnO micro/nanowire has been utilized to fabricate Schottky-contacted humidity sensors based on a metal-semiconductor-metal (M-S-M) structure. By means of the piezotronic effect, the signal level, sensitivity and s... A ZnO micro/nanowire has been utilized to fabricate Schottky-contacted humidity sensors based on a metal-semiconductor-metal (M-S-M) structure. By means of the piezotronic effect, the signal level, sensitivity and sensing resolution of the humidity sensor were significantly enhanced when applying an external strain. Since a higher Schottky barrier markedly reduces the signal level, while a lower Schottky barrier decreases the sensor sensitivity due to increased ohmic transport, a 0.22% compressive strain was found to optimize the performance of the humidity sensor, with the largest responsivity being 1,240%. The physical mechanism behind the observed mechanical-electrical behavior was carefully studied by using band structure diagrams. This work provides a promising way to significantly enhance the overall performance of a Schottky-contact structured micro/nanowire sensor. 展开更多
关键词 piezotronic effect humidity sensor ZnO micro/nanowire Schottky contact
原文传递
Functional nanogenerators as vibration sensors enhanced by piezotronic effects 被引量:6
3
作者 Zheng Zhangt Qingliang Liao +6 位作者 Xiaoqin Yan Zhong Lin Wang Wenduo Wang Xu Sun Pei Lin Yunhua Huang Yue Zhang 《Nano Research》 SCIE EI CAS CSCD 2014年第2期190-198,共9页
ZnO nanomaterials have been shown to have novel applications in optoelectronics, energy harvesting and piezotronics, due to their coupled semiconducting and piezoelectric properties. Here a functional nanogenerator (... ZnO nanomaterials have been shown to have novel applications in optoelectronics, energy harvesting and piezotronics, due to their coupled semiconducting and piezoelectric properties. Here a functional nanogenerator (FNG) based on ZnO nanowire arrays has been fabricated, which can be employed to detect vibration in both self-powered (SP) and external-powered (EP) modes. In SP mode, the vibration responses of the FNG can be measured through converting mechanical energy directly into an electrical signal. The FNG shows consistent alternating current responses (relative error 〈 0.37%) at regular frequencies from 1 to 15 Hz. In EP mode, the current responses of FNG are significantly enhanced via the piezotronic effect. Under a forward bias of 3 V, the sensor presented a sensitivity of 3700% and an accurate measurement (relative error 〈 0.91%) of vibration frequencies in the range 0.05-15 Hz. The results show that this type of functional nanogenerator sensor can detect vibration in both SP and EP modes according to the demands of the applications. 展开更多
关键词 functional nanogenerator ZnO nanowires arrays piezotronic effects piezoelectric effects vibration sensor
原文传递
Piezotronic effect on the luminescence of quantum dots for micro/nano-newton force measurement 被引量:2
4
作者 Yan Zhang Jiaheng Nie Lijie Li 《Nano Research》 SCIE EI CAS CSCD 2018年第4期1977-1986,共10页
The luminescence of semiconductor quantum dots (QDs) can be adjusted using the piezotronic effect. An external mechanical force applied on the QD generates a piezoelectric potential, which alters the luminescence of... The luminescence of semiconductor quantum dots (QDs) can be adjusted using the piezotronic effect. An external mechanical force applied on the QD generates a piezoelectric potential, which alters the luminescence of the QD. A small mechanical force may induce a significant change on the emission spectrum. In the case of InN QDs, it is demonstrated that the unforced emission wavelength is more than doubled by a force of 1 μN. The strategy of using the piezotronic effect to tune the color of the emission leads to promising noncontact force- measurement applications in biological and medical sensors and force-sensitive displays. Several piezoelectric semiconductor materials have been investigated in terms of the tunability of the emission wavelength in the presence of an external applied force. It is found that CdS and CdSe demonstrate much higher tunability δλ/δF, which makes them suitable for micro/nano-newton force measurement applications. 展开更多
关键词 piezotronic effect quantum dot (QD) LUMINESCENCE force measurement
原文传递
Analysis of piezoelectric semiconductor fibers under gradient temperature changes 被引量:1
5
作者 Shuangpeng LI Ruoran CHENG +1 位作者 Nannan MA Chunli ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期311-320,共10页
Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications ... Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications in multi-functional semiconductor devices.In this paper,a one-dimensional(1D)theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes.The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes.Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber,and can induce changes in its surface resistance.It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects. 展开更多
关键词 piezoelectric semiconductor(PS)fiber one-dimensional(1D)model piezotronic effect gradient temperature change
下载PDF
A switchable high-sensitivity strain sensor based on piezotronic resonant tunneling junctions
6
作者 Gongwei Hu Li Zeng +3 位作者 Fobao Huang Shuaiwei Fan Qiao Chen Wei Huang 《Nano Research》 SCIE EI CSCD 2024年第11期10242-10255,共14页
Developing emerging technologies in Internet of Things and artificial intelligence requires high-speed, low-power, high-sensitivity, and switchable-functionality strain sensors capable of sensing subtle mechanical sti... Developing emerging technologies in Internet of Things and artificial intelligence requires high-speed, low-power, high-sensitivity, and switchable-functionality strain sensors capable of sensing subtle mechanical stimuli in complex ambience. Resonant tunneling diodes (RTDs) are the good candidate for such sensing applications due to the ultrafast transport process, lower tunneling current, and negative differential resistance. However, notably enhancing sensing sensitivity remains one of the greatest challenges for RTD-related strain sensors. Here, we use piezotronic effect to improve sensing performance of strain sensors in double-barrier ZnO nanowire RTDs. This strain sensor not only possesses an ultrahigh gauge factor (GF) 390 GPa^(−1), two orders of magnitude higher than these reported RTD-based strain sensors, but also can switch the sensitivity with a GF ratio of 160 by adjusting bias voltage in a small range of 0.2 V. By employing Landauer–Büttiker quantum transport theory, we uncover two primary factors governing piezotronic modulation of resonant tunneling transport, i.e., the strain-mediated polarization field for manipulation of quantized subband levels, and the interfacial polarization charges for adjustment of space charge region. These two mechanisms enable strain to induce the negative differential resistance, amplify the peak-valley current ratio, and diminish the resonant bias voltage. These performances can be engineered by the regulation of bias voltage, temperature, and device architectures. Moreover, a strain sensor capable of electrically switching sensing performance within sensitive and insensitive regimes is proposed. This study not only offers a deep insight into piezotronic modulation of resonant tunneling physics, but also advances the RTD towards highly sensitive and multifunctional sensor applications. 展开更多
关键词 piezotronic effect resonant tunneling diode negative differential resistance highly sensitive strain sensor ZnO nanowire ratio of gauge factor
原文传递
Combining triboelectric nanogenerator with piezoelectric effect for optimizing Schottky barrier height modulation 被引量:2
7
作者 Luming Zhao Hu Li +4 位作者 Jianping Meng Yan Zhang Hongqin Feng Yuxiang Wu Zhou Li 《Science Bulletin》 SCIE EI CSCD 2021年第14期1409-1418,M0004,共11页
Schottky-contacted sensors have been demonstrated to show high sensitivity and fast response time in various sensing systems.In order to improve their sensing performance,the Schottky barriers height(SBH)at the interf... Schottky-contacted sensors have been demonstrated to show high sensitivity and fast response time in various sensing systems.In order to improve their sensing performance,the Schottky barriers height(SBH)at the interface of semiconductor and metal electrode should be adjusted to appropriate range to avoid low output or low sensitivity,which was induced by excessively high or low SBH,respectively.In this work,a simple and effective SBH tuning method by triboelectric generator(TENG)is proposed,the SBH can be effectively lowered by voltage pulses generated by TENG and gradually recover over time after withdrawing the TENG.Through combining the TENG treatment with piezotronic effect,a synergistic effect on lowering SBH was achieved.The change of SBH is increased by 3.8 to 12.8 times,compared with dependent TENG treatment and piezotronic effect,respectively.Furthermore,the recovery time of the TENG-lowered SBH can be greatly shortened from 1.5 h to 40 s by piezotronic effect.This work demonstrated a flexible and feasible SBH tuning method,which can be used to effectively improve the sensitivity of Schottky-contact sensor and sensing system.Our study also shows great potential in broadening the application scenarios of Schottky-contacted electronic devices. 展开更多
关键词 ZnO nanowire Triboelectric nanogenerator Schottky barrier height piezotronic effect MODULATION
原文传递
Enhanced photoresponse of Cu2O/ZnO heterojunction with piezo-modulated interface engineering 被引量:6
8
作者 Pei Lin Xiang Chen +5 位作者 Xiaoqin Yan Zheng Zhang Haoge Yuan Peifeng Li Yanguang Zhao Yue Zhang 《Nano Research》 SCIE EI CAS CSCD 2014年第6期860-868,共9页
The ability to arbitrarily regulate semiconductor interfaces provides the most effective way to modulate the performance of optoelectronic devices. However, less work has been reported on piezo-modulated interface eng... The ability to arbitrarily regulate semiconductor interfaces provides the most effective way to modulate the performance of optoelectronic devices. However, less work has been reported on piezo-modulated interface engineering in all-oxide systems. In this paper, an enhanced photoresponse of an all-oxide Cu2O/ZnO heterojunction was obtained by taking advantage of the piezotronic effect. The illumination density-dependent piezoelectric modulation ability was also comprehensively investigated. An 18.6% enhancement of photoresponse was achieved when applying a a-0.88% compressive strain. Comparative experiments confirmed that this enhancement could be interpreted in terms of the band modification induced by interfacial piezoelectric polarization. The positive piezopotential generated at the ZnO side produces an increase in space charge region in Cu2O, thus providing an extra driving force to separate the excitons more efficiently under illumination. Our research provides a promising method to boost the performance of optoelectronics without altering the interface structure and could be extended to other metal oxide devices. 展开更多
关键词 all-oxide device piezotronic effect interface modulation enhanced photoresponse
原文传递
Electrical Response of a Multiferroic Composite Semiconductor Fiber Under a Local Magnetic Field 被引量:3
9
作者 Chao Liang Chunli Zhang +1 位作者 Weiqiu Chen Jiashi Yang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第5期663-673,共11页
We study the electrical response of a multiferroic composite semiconductor fiber consisting of a piezoelectric semiconductor layer and two piezomagnetic layers under a transverse magnetic field applied locally to a fi... We study the electrical response of a multiferroic composite semiconductor fiber consisting of a piezoelectric semiconductor layer and two piezomagnetic layers under a transverse magnetic field applied locally to a finite part of the fiber.The phenomenological theory of piezomagnetic-piezoelectric semiconductors is employed.A one-dimensional model is derived for magnetically induced extension of the fiber.For open-circuit boundary conditions at the two ends of the fiber,an analytical solution is obtained from the model linearized for small carrier perturbations.The solution shows a local electric polarization and a pair of local electric potential barrier-well.When the two ends of the fiber are under a voltage,a nonlinear numerical solution shows that the potential barrier and well forbid the passage of currents when the voltage is low.The results have potential applications in piezotronic devices when magnetic fields are involved for manipulating the devices or sensing and transduction. 展开更多
关键词 Piezomagnetic PIEZOELECTRIC SEMICONDUCTOR piezotronic effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部