The study was conducted to reveal P fractions and N forms changing characters during composting of pig manure with rice straw.During composting,the NH 4 +-N concentration decreased and reached at a relatively low va...The study was conducted to reveal P fractions and N forms changing characters during composting of pig manure with rice straw.During composting,the NH 4 +-N concentration decreased and reached at a relatively low value(〈400 mg kg-1) in the final compost,while the NO 3--N concentration increased.Total N losses mainly occurred during thermophilic phase due to the high temperature,the high NH 4 +-N concentration and the increase of pH value.Labile inorganic P was dominated in the pig manure and initial compost mixture.During composting,the proportion of labile inorganic P of total extracted P decreased,while the proportion of Fe+Al-bound P,Ca+Mg-bound P and residual P increased.The evolutions of the proportion of labile inorganic P,Fe+Al-bound P and Ca+Mg-bound P were well correlated with the changes of pH value,organic matter and C/N ratio.Therefore,composting could increase the concentration of N and P and decrease the presence of NH 4 +-N and labile P fractions which might cause environmental issues following land application.展开更多
Composting is now suggested as one of the environmentally and friendly alternative method for disposal of solid organic wastes, as it leads to minimization, stabilization, and utilization of organic waste. Transformat...Composting is now suggested as one of the environmentally and friendly alternative method for disposal of solid organic wastes, as it leads to minimization, stabilization, and utilization of organic waste. Transformations of nitrogen were investigated in co-composting of pig manure with different amendments, such as sawdust and leaves. Samples were analyzed for pH, total-N, soluble NH4-N, soluble NO3-N and soluble organic-N. The total-N increased after 63 days of composting, as well as the soluble NO3-N and soluble organic-N. Soluble NH4,-N increased significantly and showed peak values at day 7, thereafter decreased sharply and gradually to lower levels. Seed germination index (GI) showed that co-composting of pig manure with sawdust reached maturity after 49 days of composting, while co-composting of pig manure with sawdust and leases required shorter time for 35 days. Soluble NH4-N was significantly negatively ( P < 0.05) , while soluble NO3-N and soluble organic-N were significantly positively ( P < 0.05), correlated with seed germination index (GI). Addition of leaves in co-composting of pig manure with sawdust had no significant impacts on nitrogen transformations, but it was beneficial for maturity of pig manure compost.展开更多
The widespread use of feed additives in intensive and large-scale pig farming has resulted in high levels of heavy metals in pig manure.The long-term application of organic fertilizers containing high levels of heavy ...The widespread use of feed additives in intensive and large-scale pig farming has resulted in high levels of heavy metals in pig manure.The long-term application of organic fertilizers containing high levels of heavy metals leads to the accumulation of heavy metals in the soil,which not only causes heavy metal pollution in the soil,and also affect food safety and endanger human health.Composting is an economical and effective technical measures to achieve environmentally-sustainable treatment of pig manure and is a practical method to reduce the problem of heavy metals and to improve the resource value of pig manure.The composting process is accompanied by high temperatures and the production and emission of gases,and also lead to changes in the nitrogen content of the compost and provide opportunity for heavy metal passivation additives.This paper summarizes the forms and types of heavy metals present in pig manure and reviews the progress of research as well as the techniques and problems of in the composting process,and provides recommendations for research on heavy metal passivation and nitrogen retention in pig manure composting.展开更多
Aerobic static pile composting (mechanical turning every 3 days) of pig manure was prepared at & m3 windrow heaps. Sawdust was used as the bulking agent to provide additional carbon and to increase the porosity of...Aerobic static pile composting (mechanical turning every 3 days) of pig manure was prepared at & m3 windrow heaps. Sawdust was used as the bulking agent to provide additional carbon and to increase the porosity of the substrate. Two treatments at initial C/N ratios of 30 and 15, respectively, were designed in the study. Dissolved organic carbon (DOC), soluble NH+4-N, C/N ratios in solid and aqueous phases, E4/E6 ratios, and seed germination index (GI) were determined to evaluate the maturity of the co-composts. Seed germination index, a biological parameter, was suggested as one of the most reliable maturity indicators for organic compost. The results showed that the treatment at the initial C/N ratio of 30 reached maturity after 49 days of composting; however, the treatment at the initial C/N ratio of 15 should require composting time of longer than 63 days to obtain maturation. Chemical multi-indicator evaluation was necessary, and the GI measurement was the recommended approach for maturity evaluation in the study.展开更多
[ Objective] The aim of this study was to develop a cheap and localized microbial agent so as to solve high cost of microbial agent for pig manure composting in Jiaxing City. [ Method] Pig manure in the experimental g...[ Objective] The aim of this study was to develop a cheap and localized microbial agent so as to solve high cost of microbial agent for pig manure composting in Jiaxing City. [ Method] Pig manure in the experimental group and control group was inoculated with the self-developed micro- bial agent and commercial microbial agent, respectively. The manure was decomposed for 38 d, during which the indicators of compost including physical properties, temperature, pH value, water content, organic matter, dissolved nitrogen, carbon nitrogen ratio and germination rate were studied. [ Result] The water content in the experimental group declined to 26.10% after 33 d of compost, meeting the standard upper limitation of 30% for maturity. By comparison, the water content in the control group was slightly higher than 30% even after 38 d. The germination rate of seeds fertilized with the experimental manure compost met the standard for maturity on Day 28, while that in the control group met the standard for maturity on Day 35. When the composting was finished, the ratio of total carbon to total nitrogen in the pig manure was 14.64 and 16.43 respective- ly in the experimental and control group, and the organic matter content was about 45% for both. All these indexes could meet the standards for or- ganic fertilizer products. [ Conclusion] The self-developed microbial agent can moot the requirements for pig manure composting, and it can shorten the composting time by 5 -8 d compared with the commercial agent. In addition, the fertilizer product composted by the self-developed microbial a qent has lower water content and thereby is much more beneficial for preservation.展开更多
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07201004)Jilin Provincial Research Foundation for Basic Research, China (201105033)
文摘The study was conducted to reveal P fractions and N forms changing characters during composting of pig manure with rice straw.During composting,the NH 4 +-N concentration decreased and reached at a relatively low value(〈400 mg kg-1) in the final compost,while the NO 3--N concentration increased.Total N losses mainly occurred during thermophilic phase due to the high temperature,the high NH 4 +-N concentration and the increase of pH value.Labile inorganic P was dominated in the pig manure and initial compost mixture.During composting,the proportion of labile inorganic P of total extracted P decreased,while the proportion of Fe+Al-bound P,Ca+Mg-bound P and residual P increased.The evolutions of the proportion of labile inorganic P,Fe+Al-bound P and Ca+Mg-bound P were well correlated with the changes of pH value,organic matter and C/N ratio.Therefore,composting could increase the concentration of N and P and decrease the presence of NH 4 +-N and labile P fractions which might cause environmental issues following land application.
文摘Composting is now suggested as one of the environmentally and friendly alternative method for disposal of solid organic wastes, as it leads to minimization, stabilization, and utilization of organic waste. Transformations of nitrogen were investigated in co-composting of pig manure with different amendments, such as sawdust and leaves. Samples were analyzed for pH, total-N, soluble NH4-N, soluble NO3-N and soluble organic-N. The total-N increased after 63 days of composting, as well as the soluble NO3-N and soluble organic-N. Soluble NH4,-N increased significantly and showed peak values at day 7, thereafter decreased sharply and gradually to lower levels. Seed germination index (GI) showed that co-composting of pig manure with sawdust reached maturity after 49 days of composting, while co-composting of pig manure with sawdust and leases required shorter time for 35 days. Soluble NH4-N was significantly negatively ( P < 0.05) , while soluble NO3-N and soluble organic-N were significantly positively ( P < 0.05), correlated with seed germination index (GI). Addition of leaves in co-composting of pig manure with sawdust had no significant impacts on nitrogen transformations, but it was beneficial for maturity of pig manure compost.
基金supported by the National Key Research and Development Program of China(2018YFE0127000)Key R&D Program of Shaanxi Province(2022ZDLNY02-09)+1 种基金China Agriculture Research System(CARS-23-C-05)Postdoctoral Foundation of the Shaanxi Province(2018BSHEDZZ20)
文摘The widespread use of feed additives in intensive and large-scale pig farming has resulted in high levels of heavy metals in pig manure.The long-term application of organic fertilizers containing high levels of heavy metals leads to the accumulation of heavy metals in the soil,which not only causes heavy metal pollution in the soil,and also affect food safety and endanger human health.Composting is an economical and effective technical measures to achieve environmentally-sustainable treatment of pig manure and is a practical method to reduce the problem of heavy metals and to improve the resource value of pig manure.The composting process is accompanied by high temperatures and the production and emission of gases,and also lead to changes in the nitrogen content of the compost and provide opportunity for heavy metal passivation additives.This paper summarizes the forms and types of heavy metals present in pig manure and reviews the progress of research as well as the techniques and problems of in the composting process,and provides recommendations for research on heavy metal passivation and nitrogen retention in pig manure composting.
基金the Rockefeller Brother Fund Ltd. and Guangdong Key Laboratory of Agricultural Environment integrated Control.
文摘Aerobic static pile composting (mechanical turning every 3 days) of pig manure was prepared at & m3 windrow heaps. Sawdust was used as the bulking agent to provide additional carbon and to increase the porosity of the substrate. Two treatments at initial C/N ratios of 30 and 15, respectively, were designed in the study. Dissolved organic carbon (DOC), soluble NH+4-N, C/N ratios in solid and aqueous phases, E4/E6 ratios, and seed germination index (GI) were determined to evaluate the maturity of the co-composts. Seed germination index, a biological parameter, was suggested as one of the most reliable maturity indicators for organic compost. The results showed that the treatment at the initial C/N ratio of 30 reached maturity after 49 days of composting; however, the treatment at the initial C/N ratio of 15 should require composting time of longer than 63 days to obtain maturation. Chemical multi-indicator evaluation was necessary, and the GI measurement was the recommended approach for maturity evaluation in the study.
基金funded by the Science and Technology Project of Nanhu District,Jiaxing City,Zhejiang Province
文摘[ Objective] The aim of this study was to develop a cheap and localized microbial agent so as to solve high cost of microbial agent for pig manure composting in Jiaxing City. [ Method] Pig manure in the experimental group and control group was inoculated with the self-developed micro- bial agent and commercial microbial agent, respectively. The manure was decomposed for 38 d, during which the indicators of compost including physical properties, temperature, pH value, water content, organic matter, dissolved nitrogen, carbon nitrogen ratio and germination rate were studied. [ Result] The water content in the experimental group declined to 26.10% after 33 d of compost, meeting the standard upper limitation of 30% for maturity. By comparison, the water content in the control group was slightly higher than 30% even after 38 d. The germination rate of seeds fertilized with the experimental manure compost met the standard for maturity on Day 28, while that in the control group met the standard for maturity on Day 35. When the composting was finished, the ratio of total carbon to total nitrogen in the pig manure was 14.64 and 16.43 respective- ly in the experimental and control group, and the organic matter content was about 45% for both. All these indexes could meet the standards for or- ganic fertilizer products. [ Conclusion] The self-developed microbial agent can moot the requirements for pig manure composting, and it can shorten the composting time by 5 -8 d compared with the commercial agent. In addition, the fertilizer product composted by the self-developed microbial a qent has lower water content and thereby is much more beneficial for preservation.