期刊文献+
共找到771篇文章
< 1 2 39 >
每页显示 20 50 100
Study of vibrating foundations considering soil-pile-structure interaction for practical applications 被引量:5
1
作者 Han Yingcai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第3期321-327,共7页
An investigation of soil-pile-structure interaction is carried out, based on a large reciprocating compressor installed on an elevated concrete foundation (table top structure). A practical method is described for t... An investigation of soil-pile-structure interaction is carried out, based on a large reciprocating compressor installed on an elevated concrete foundation (table top structure). A practical method is described for the dynamic analysis, and compared with a 3D finite element (FE) model. Two commercial software packages are used for dynamic analysis considering the soilpile-structure interaction (SPSI). Stiffness and damping of the pile foundation are generated from a computer program, and then input into the FE model. To examine the SPSI thoroughly, three cases for the soil, piles and superstructure are considered and compared. In the first case, the interaction is fully taken into account, that is, both the superstructure and soil-pile system are flexible. In the second case, the superstructure is flexible but fixed to a rigid base, with no deformation in the base (no SSI). In the third case, the dynamic soil-pile interaction is taken into account, but the table top structure is assumed to be rigid. From the comparison beteen the results of these three cases some conclusions are made, which could be helpful for engineering practice. 展开更多
关键词 soil-pile-structure interaction soil dynamics structural dynamics vibrating foundation
下载PDF
SOIL PILE INTERACTION UNDER STATIC, DYNAMIC AND CYCLIC LATERAL LOADS AND A PROPOSAL OF p-y CURVE FORMULA 被引量:1
2
作者 Gao, Ming Chen, Jinzhen +1 位作者 Zhen, Guofang Fang, Huolang 《China Ocean Engineering》 SCIE EI 1989年第3期259-270,共12页
In this paper, the studies on soil-pile interaction behaviors in saturated sands under static, dynamic and cyclic lateral loads by model testing are described. By comparing with the field test results for piles in sof... In this paper, the studies on soil-pile interaction behaviors in saturated sands under static, dynamic and cyclic lateral loads by model testing are described. By comparing with the field test results for piles in soft sandy clay, a formula of p-y curves based on constitutive relationship of soils applicable for both sandy and soft clays is proposed. Good agreements are obtained in comparison with the field test results performed by other investigators abroad. A p-y hysteresis curve formula based on the modified Masing's doubling criterion is also proposed, and the results are in satisfactory agreement with field test results. 展开更多
关键词 foundationS soil Structure interaction Mathematical Models pileS Loading soilS Structural Analysis Dynamic Response
下载PDF
Influence of dynamic soil-pile raft-structure interaction:an experimental approach 被引量:5
3
作者 Rajib Saha Sumanta Haldar Sekhar Chandra Dutta 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第4期625-645,共21页
Traditionally seismic design of structures supported on piled raft foundation is performed by considering fixed base conditions, while the pile head is also considered to be fixed for the design of the pile foundation... Traditionally seismic design of structures supported on piled raft foundation is performed by considering fixed base conditions, while the pile head is also considered to be fixed for the design of the pile foundation. Major drawback of this assumption is that it cannot capture soil-foundation-structure interaction due to flexibility of soil or the inertial interaction involving heavy foundation masses. Previous studies on this subject addressed mainly the intricacy in modelling of dynamic soil structure interaction (DSSI) but not the implication of such interaction on the distribution of forces at various elements of the pile foundation and supported structure. A recent numerical study by the authors showed significant change in response at different elements of the piled raft supported structure when DSSI effects are considered. The present study is a limited attempt in this direction, and it examines such observations through shake table tests. The effect of DSSI is examined by comparing dynamic responses from fixed base scaled down model structures and the overall systems. This study indicates the possibility of significant underestimation in design forces for both the column and pile if designed under fixed base assumption. Such underestimation in the design forces may have serious implication in the design of a foundation or structural element. 展开更多
关键词 soil-foundation-structure interaction piled raft foundation base shear pile head shear model test
下载PDF
Pile-clayey soil interaction analysis by boundary element method 被引量:2
4
作者 Mohammed Y.Fattah Kais T.Shlash Madhat S.M.Al-Soud 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第1期28-43,共16页
This paper is an attempt to solve the soil-pile interaction problems using the boundary element method(BEM).A computer package called PGroupN,which deals mainly with the analysis of the pile group problem,is employe... This paper is an attempt to solve the soil-pile interaction problems using the boundary element method(BEM).A computer package called PGroupN,which deals mainly with the analysis of the pile group problem,is employed in this study.Parametric studies are carried out to assess the impacts of the pile diameter,pile length,ratio of spacing to diameter and the thickness of soil stratum.The external load is applied incrementally and,at each increment,a check is made that the stress state at the pile-soil interfaces does not violate the yield criteria.This is achieved by specifying the limited stresses of the soil for the axial pile shaft capacity and end-bearing resistance.The elements of the pile-soil interface yielded can take no additional load,and any increase in load is therefore redistributed between the remaining elements until all elements have failed.Thus,by successive application of loading increments,the entire load-displacement relationship for the pile group is determined.It is found that as the applied load reaches the ultimate bearing capacity of the pile group,all the piles will share the same amount of load.An exception to this case is for the center pile in a group of 9 piles embedded in clay,which is not consistent with the behaviors of the other piles in the group even if the load reaches the ultimate state.For the 4 piles group embedded in clay,the maximum load carried by the base does not exceed 8% of the load carried by each pile with different diameters.This low percentage ascertains that the piles embedded in cohesive soils carry most of the load throughout their shafts. 展开更多
关键词 pile foundations clayey soil pile-soil interaction boundary element method (BEM)
下载PDF
Settlement mechanism of piled-raft foundation due to cyclic train loads and its countermeasure 被引量:1
5
作者 Gu Linlin Ye Guanlin +2 位作者 Wang Zhen Ling Xianzhang Zhang Feng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第3期499-511,共13页
In this paper, numerical simulation with soil-water coupling finite element-finite difference(FE-FD) analysis is conducted to investigate the settlement and the excess pore water pressure(EPWP) of a piled-raft fou... In this paper, numerical simulation with soil-water coupling finite element-finite difference(FE-FD) analysis is conducted to investigate the settlement and the excess pore water pressure(EPWP) of a piled-raft foundation due to cyclic high-speed(speed: 300km/h) train loading. To demonstrate the performance of this numerical simulation, the settlement and EPWP in the ground under the train loading within one month was calculated and confirmed by monitoring data, which shows that the change of the settlement and EPWP can be simulated well on the whole. In order to ensure the safety of train operation, countermeasure by the fracturing grouting is proposed. Two cases are analyzed, namely, grouting in No-4 softest layer and No-9 pile bearing layer respectively. It is found that fracturing grouting in the pile bearing layer(No-9 layer) has better effect on reducing the settlement. 展开更多
关键词 high-speed train piled-raft foundation FEM SETTLEMENT soil-pile interaction fracturing grouting.
下载PDF
Numerical simulation on behavior of pile foundations under cyclic axial loads 被引量:4
6
作者 ZHAO Ming-hua HENG Shuai ZHENG Yue 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2906-2913,共8页
On the basis of the two dimensional finite element analysis model, the pile foundations' mechanical effect of the rigid pile composite foundation under the dynamic load was researched. Through the research, the de... On the basis of the two dimensional finite element analysis model, the pile foundations' mechanical effect of the rigid pile composite foundation under the dynamic load was researched. Through the research, the development law and deformation property of axial force of pile body, shaft resistance of pile, and cumulative settlement of pile head under vertical cyclic dynamic loads were concluded. Through the comparison and analysis of the test results of dynamic models, the test results of Poulos(1989) and cumulative settlement model of the single pile under cyclic loads were confirmed. Based on the above research, Fortran language was adopted to introduce the soil attenuation factor, the secondary development of relevant modules of ABAQUS was carried out, and the effect of soil attenuation factor on dynamic property of pile-soil was discussed further. 展开更多
关键词 pile foundation ABAQUS CYCLIC dynamic load numerical simulation pile-soil interaction SECONDARY development
下载PDF
Time-dependent deviation of bridge pile foundations caused by adjacent large-area surcharge loads in soft soils and its preventive measures
7
作者 Shuanglong LI Limin WEI +4 位作者 Jingtai NIU Zhiping DENG Bangbin WU Wuwen QIAN Feifei HE 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第2期184-201,共18页
Time-dependent characteristics(TDCs)have been neglected in most previous studies investigating the deviation mechanisms of bridge pile foundations and evaluating the effectiveness of preventive measures.In this study,... Time-dependent characteristics(TDCs)have been neglected in most previous studies investigating the deviation mechanisms of bridge pile foundations and evaluating the effectiveness of preventive measures.In this study,the stress-strain-time characteristics of soft soils were illustrated by consolidation-creep tests based on a typical engineering case.An extended Koppejan model was developed and then embedded in a finite element(FE)model via a user-material subroutine(UMAT).Based on the validated FE model,the time-dependent deformation mechanism of the pile foundation was revealed,and the preventive effect of applying micropiles and stress-release holes to control the deviation was investigated.The results show that the calculated maximum lateral displacement of the cap differs from the measured one by 6.5%,indicating that the derived extended Koppejan model reproduced the deviation process of the bridge cap-pile foundation with time.The additional load acting on the pile side caused by soil lateral deformation was mainly concentrated within the soft soil layer and increased with the increase in load duration.Compared with t=3 d(where t is surcharge time),the maximum lateral additional pressure acting on Pile 2#increased by approximately 47.0%at t=224 d.For bridge pile foundation deviation in deep soft soils,stress-release holes can provide better prevention compared to micropiles and are therefore recommended. 展开更多
关键词 bridge pile foundation surcharge load soft soil time-dependent deformation interaction mechanism preventive measure
原文传递
Stochastic Response Analysis of Piled Offshore Platforms to Earthquake Load 被引量:1
8
作者 Zhang, Lifu Luo, Chuanxin 《China Ocean Engineering》 SCIE EI 1993年第2期177-186,共10页
In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the st... In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis. 展开更多
关键词 Dynamic loads Dynamic response Earthquake resistance Equations of motion Finite element method Fluid structure interaction pile foundations Seismic waves soil structure interactions Spectrum analysis Stochastic control systems Vibrations (mechanical)
下载PDF
Seismic performance of an existing bridge with scoured caisson foundation 被引量:2
9
作者 Kuo-Chun Chang Yu-Chi Sung +4 位作者 Kuang-Yen Liu Ping-Hsiung Wang Zheng-Kuan Lee Lu-Sheng Lee Witarto 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第S1期151-165,共15页
This paper presents in-situ seismic performance tests of a bridge before its demolition due to accumulated scouring problem. The tests were conducted on three single columns and one caisson-type foundation. The three ... This paper presents in-situ seismic performance tests of a bridge before its demolition due to accumulated scouring problem. The tests were conducted on three single columns and one caisson-type foundation. The three single columns were 1.8 m in diameter,reinforced by 30-D32 longitudinal reinforcements and laterally hooped by D16 reinforcements with spacing of 20 cm. The column height is 9.54 m,10.59 m and 10.37 m for Column P2,P3,and P4,respectively. Column P2 had no exposed foundation and was subjected to pseudo-dynamic tests with peak ground acceleration of 0.32 g first,followed by one cyclic loading test. Column P3 was the benchmark specimen with exposed length of 1.2 m on its foundation. The exposed length for Column P4 was excavated to 4 m,approximately 1/3 of the foundation length,to study the effect of the scouring problem to the column performance. Both Column P3 and Column P4 were subjected to cyclic loading tests. Based on the test results,due to the large dimension of the caisson foundation and the well graded gravel soil type that provided large lateral resistance,the seismic performance among the three columns had only minor differences. Lateral push tests were also conducted on the caisson foundation at Column P5. The caisson was 12 m long and had circular cross-sections whose diameters were 5 m in the upper portion and 4 m in the lower portion. An analytical model to simulate the test results was developed in the OpenSees platform. The analytical model comprised nonlinear flexural elements as well as nonlinear soil springs. The analytical results closely followed the experimental test results. A parametric study to predict the behavior of the bridge column with different ground motions and different levels of scouring on the foundation are also discussed. 展开更多
关键词 Analytical models Cyclic loads Hydraulic structures pileS Pressure vessels reinforcement Seismic waves SEISMOLOGY soil structure interactions soils Textile scouring Underwater foundations
下载PDF
Earthquake damage potential and critical scour depth of bridges exposed to flood and seismic hazards under lateral seismic loads 被引量:4
10
作者 Shin-Tai Song Chun-Yao Wang Wen-Hsiu Huang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第4期579-594,共16页
Many bridges located in seismic hazard regions suffer from serious foundation exposure caused by riverbed scour. Loss of surrounding soil significantly reduces the lateral strength of pile foundations. When the scour ... Many bridges located in seismic hazard regions suffer from serious foundation exposure caused by riverbed scour. Loss of surrounding soil significantly reduces the lateral strength of pile foundations. When the scour depth exceeds a critical level, the strength of the foundation is insufficient to withstand the imposed seismic demand, which induces the potential for unacceptable damage to the piles during an earthquake. This paper presents an analytical approach to assess the earthquake damage potential of bridges with foundation exposure and identify the critical scour depth that causes the seismic performance of a bridge to differ from the original design. The approach employs the well-accepted response spectrum analysis method to determine the maximum seismic response of a bridge. The damage potential of a bridge is assessed by comparing the imposed seismic demand with the strengths of the column and the foundation. The versatility of the analytical approach is illustrated with a numerical example and verified by the nonlinear finite element analysis. The analytical approach is also demonstrated to successfully determine the critical scour depth. Results highlight that relatively shallow scour depths can cause foundation damage during an earthquake, even for bridges designed to provide satisfactory seismic performance. 展开更多
关键词 soil-structure interaction seismic analysis bridge pile foundation SCOUR
下载PDF
Optimum lateral extent of soil domain for dynamic SSI analysis of RC framed buildings on pile foundations 被引量:1
11
作者 Nishant SHARMA Kaustubh DASGUPTA Arindam DEY 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2020年第1期62-81,共20页
This article describes a novel approach for deciding optimal horizontal extent of soil domain to be used for finite element based numerical dynamic soil structure interaction(SSI)studies.SSI model for a 12 storied bui... This article describes a novel approach for deciding optimal horizontal extent of soil domain to be used for finite element based numerical dynamic soil structure interaction(SSI)studies.SSI model for a 12 storied building frame,supported on pile foundation-soil system,is developed in the finite element based software framework,OpenSEES.Three different structure-foundation configurations are analyzed under different ground motion characteristics.Lateral extent of soil domain,along with the soil properties,were varied exhaustively for a particular structural configuration.Based on the reduction in the variation of acceleration response at different locations in the SSI system(quantified by normalized root mean square error,NRMSE),the optimum lateral extent of the soil domain is prescribed for various structural widths,soil types and peak ground acceleration levels of ground motion.Compared to the past studies,error estimation analysis shows that the relationships prescribed in the present study are credible and more inclusive of the various factors that influence SSI.These relationships can be readily applied for deciding upon the lateral extent of the soil domain for conducting precise SSI analysis with reduced computational time. 展开更多
关键词 soil structure interaction OPTIMUM LATERAL extent of soil DOMAIN length multi-storyed framed building pile foundation OPENSEES L-K boundaries dynamic ANALYSIS
原文传递
考虑竖向荷载作用时液化土中群桩基础水平动力响应
12
作者 胡安峰 陈奕扬 +1 位作者 肖志荣 陈正 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第7期1075-1085,共11页
基于Biot饱和多孔介质理论,考虑液化土的流动特性,建立考虑竖向荷载作用的部分埋入群桩水平振动模型,通过分离变量法、算子分解法,引入桩土耦合及位移连续条件,得到复杂条件下液化土中高桩桩间相互作用因子解和群桩水平动阻抗解.通过参... 基于Biot饱和多孔介质理论,考虑液化土的流动特性,建立考虑竖向荷载作用的部分埋入群桩水平振动模型,通过分离变量法、算子分解法,引入桩土耦合及位移连续条件,得到复杂条件下液化土中高桩桩间相互作用因子解和群桩水平动阻抗解.通过参数分析,表明液化土特性和竖向荷载对桩间水平相互作用因子、群桩动阻抗有显著影响,指出同一频率下,群桩水平动刚度随着表层液化土厚度的增加而下降,当液化厚度较大时,动刚度随频率上升显著下降,并出现负刚度;桩顶竖向荷载会降低液化土中的群桩动刚度,液化土厚度越大,削弱效果越明显. 展开更多
关键词 液化土 高桩基础 竖向荷载 桩间水平相互作用
下载PDF
双向增强复合地基桩土应力比计算方法研究
13
作者 张思峰 孙亚峰 +2 位作者 刘乾 范伟 龙关旭 《铁道工程学报》 EI CSCD 北大核心 2024年第9期7-14,共8页
研究目的:桩土应力比是反映双向增强复合地基工作特性的重要指标。由于路堤荷载下双向增强复合地基承载变形机理复杂,本文以双桩范围内的路堤与双向复合地基为研究对象,考虑路堤土拱效应、加筋层网兜效应、应力扩散效应等多重效应的共... 研究目的:桩土应力比是反映双向增强复合地基工作特性的重要指标。由于路堤荷载下双向增强复合地基承载变形机理复杂,本文以双桩范围内的路堤与双向复合地基为研究对象,考虑路堤土拱效应、加筋层网兜效应、应力扩散效应等多重效应的共同作用,建立路堤-水平加筋垫层-竖向桩体-桩间土协调变形的二维理论分析模型,探究各影响因素对桩土应力比的影响规律。研究结论:(1)桩土应力比随填土重度、桩间距的增加而减小,随填料内摩擦角的增大呈先增加后减小趋势,随路堤填筑高度、格栅层数、填料黏聚力的增加而增大;(2)桩土应力比对各参数的敏感性由高到低排序为:桩间距、路堤填筑高度、路堤填土重度、路堤填料黏聚力、格栅层数及路堤填料内摩擦角;(3)本研究成果可为类似工程的桩土应力比计算提供理论依据及工程借鉴。 展开更多
关键词 双向增强复合地基 多重效应 土工格栅 桩土应力比 影响因素 敏感性分析
下载PDF
基于数值模拟的桩网复合地基加固效果对比分析
14
作者 王瑞芳 李闯 《四川建筑科学研究》 2024年第6期85-90,114,共7页
利用有限元分析软件ABAQUS建立了二维桩网复合地基模型,分析了预应力高强度混凝土(prestressed high-strength concrete,简称PHC)桩网复合地基、桩承式复合地基、PHC桩砂桩复合地基这3种复合地基加固方式,在路堤荷载下的变形、受力特性... 利用有限元分析软件ABAQUS建立了二维桩网复合地基模型,分析了预应力高强度混凝土(prestressed high-strength concrete,简称PHC)桩网复合地基、桩承式复合地基、PHC桩砂桩复合地基这3种复合地基加固方式,在路堤荷载下的变形、受力特性。数值计算结果表明:桩承式复合地基的路面沉降最小,PHC桩网复合地基其次,PHC桩砂桩复合地基最大;桩承式复合地基的桩土应力比、桩体荷载分担比最大,土拱效应最明显。计算分析数据说明,针对复杂的、软土较深厚的高速公路、铁路的路基,可采用桩承式复合地基加固,加固效果更好。 展开更多
关键词 桩网复合地基 加固效果 荷载传递规律 变形 土拱效应
下载PDF
基于界面本构模型的砂土中单桩荷载−沉降响应预测方法 被引量:2
15
作者 周攀 李镜培 +2 位作者 李盼盼 刘耕云 张超哲 《岩土力学》 EI CAS CSCD 北大核心 2024年第6期1686-1698,共13页
基于界面本构模型提出了一种新的砂土中单桩荷载沉降响应的预测方法。首先,从土−结构界面本构模型出发推导了严格的桩−土界面非线性荷载传递模型,该模型承继了界面本构模型特征,能够模拟桩−土界面上发生的应变硬化/软化、剪胀与应力路... 基于界面本构模型提出了一种新的砂土中单桩荷载沉降响应的预测方法。首先,从土−结构界面本构模型出发推导了严格的桩−土界面非线性荷载传递模型,该模型承继了界面本构模型特征,能够模拟桩−土界面上发生的应变硬化/软化、剪胀与应力路径依赖性等行为。此外,采用双曲线荷载传递模型模拟桩端−土相互作用的非线性应力−位移关系。上述荷载传递模型所需参数可以通过室内界面剪切试验和土工试验进行校准。继而,基于荷载传递法,提出了单桩荷载沉降响应分析的一维计算模型,并采用迭代算法进行数值求解。最后,将理论解答与已报道的模型试验、自主开展的模型桩试验以及数值模拟结果进行比较,以验证所提出的理论方法的正确性。试验结果表明,预测值与实测值吻合较好,且该方法能够很好地预测非位移桩与位移桩的荷载沉降响应。提出了一个基于界面本构模型的单桩荷载沉降响应分析框架,为竖向荷载下砂土中单桩优化设计提供了理论参考。 展开更多
关键词 单桩 砂土 荷载-沉降响应 桩-土相互作用 界面本构模型 模型试验
下载PDF
基于现场试验的CFG桩复合地基桩帽与垫层效应分析 被引量:1
16
作者 姚云龙 张晓辉 +1 位作者 刘鑫 徐寿政 《太原理工大学学报》 CAS 北大核心 2024年第5期815-822,共8页
【目的】柔性垫层和桩帽对CFG桩复合地基的桩土应力比、荷载分担比和沉降均有较大影响,但目前柔性垫层与桩帽在现场试验中如何共同影响复合地基特性仍有待进一步的研究。【方法】以CFG桩复合地基软基处理的某路段作为工程背景,在土工格... 【目的】柔性垫层和桩帽对CFG桩复合地基的桩土应力比、荷载分担比和沉降均有较大影响,但目前柔性垫层与桩帽在现场试验中如何共同影响复合地基特性仍有待进一步的研究。【方法】以CFG桩复合地基软基处理的某路段作为工程背景,在土工格栅层数不变的情况下,对垫层厚度为100 mm、200 mm、300 mm,桩帽尺寸为0.8 m、1.0 m、1.2 m组合下的形式进行了现场原位试验,研究了CFG桩复合地基的桩土应力比、荷载分担比和沉降特性。【结果】现场试验表明:随着垫层厚度由100 mm增大到300 mm,桩土荷载比减小了51.5%,桩土应力比减小了52.5%,总沉降量增大了7.9%;随着桩帽直径由0.8 m增大到1.2 m,桩土荷载比增大了29.0%,桩土应力比减小了29.2%,总沉降量10.4%.本文区域地质条件,宜选用垫层厚度100 mm、桩帽直径为1.2 m的CFG桩复合地基形式。 展开更多
关键词 CFG桩复合地基 柔性垫层 桩帽 现场试验 桩土应力比 沉降
下载PDF
场地土性对核岛隔震结构影响的振动台试验研究 被引量:1
17
作者 尚岩峰 景立平 +1 位作者 陆新宇 齐文浩 《防灾科技学院学报》 2024年第1期1-15,共15页
为研究不同地基土的土-结构动力相互作用对基础隔震体系动力反应影响规律,配备了3种不同硬度的地基土,开展土-群桩-核岛体系与土-群桩-隔震支座-核岛体系结构动力相互作用振动台试验,分析了不同场地土之间桩土相互作用、上部结构动力响... 为研究不同地基土的土-结构动力相互作用对基础隔震体系动力反应影响规律,配备了3种不同硬度的地基土,开展土-群桩-核岛体系与土-群桩-隔震支座-核岛体系结构动力相互作用振动台试验,分析了不同场地土之间桩土相互作用、上部结构动力响应特征、桩身内力分布、变形规律以及破坏情况等。结果表明:地基土硬度的变化,对隔震体系桩-土相互作用有明显影响。随着桩土刚度比的增大,基础隔震支座的隔震效率逐渐减小,且土结分离现象更为明显;对于隔震结构,在不同场地土中加入隔震支座后,桩身受弯峰值随着土体刚度增大沿桩身高度逐渐增大;核电工程采用隔震支座时,应考虑不同场地土地基对于桩基础受力分布的改变,做出相应加固措施,以保证其安全性。 展开更多
关键词 基础隔震 振动台试验 土-桩相互作用 桩基础 数值模拟
下载PDF
桩—土—钢、砼结构动力相互作用试验对比研究
18
作者 余佳科 景立平 +2 位作者 王展 陆新宇 齐文浩 《震灾防御技术》 CSCD 北大核心 2024年第1期151-159,共9页
为了分析不同上部结构-桩-土相互作用规律,分别进行了钢框架结构-桩-土模型和混凝土结构-桩-土模型的振动台试验,并对试验模型进行了相应的有限元数值模拟分析。试验采用三维叠层剪切模型箱,土体为均匀粉质黏土,钢结构和混凝土结构模型... 为了分析不同上部结构-桩-土相互作用规律,分别进行了钢框架结构-桩-土模型和混凝土结构-桩-土模型的振动台试验,并对试验模型进行了相应的有限元数值模拟分析。试验采用三维叠层剪切模型箱,土体为均匀粉质黏土,钢结构和混凝土结构模型为简化的3层框架结构,桩基为3×3根群桩,桩径为10 cm,桩长为200 cm,输入为人工地震动时程,按时间相似比压缩1/5。振动台对比试验结果表明,相同几何尺寸的结构试验模型,混凝土结构的整体刚度大于钢结构,因此振动频率大于钢结构;相同地震作用下,钢框架结构模型加速度反应明显大于混凝土结构,桩身加速度放大系数前者为后者1.15~1.2倍,上部结构可达2倍,钢框架结构模型反应谱的卓越周期更长。有限元数值模拟的结果定性地验证了试验结果的合理性。 展开更多
关键词 钢结构 砼结构 桩基础 振动台试验 动力相互作用
下载PDF
桩-土-结构动力相互作用影响因素分析
19
作者 刘敬羽 景立平 齐文浩 《地震工程与工程振动》 CSCD 北大核心 2024年第5期210-221,共12页
为了研究桩-土-结构动力相互作用机理,分析其影响因素,采用振动台试验和数值模拟分析相结合的方法,对不同上部结构质量、不同输入波频率和加速度峰值输入下的桩-土-结构体系的水平动力反应规律进行了分析和讨论。试验地基土体模型为中硬... 为了研究桩-土-结构动力相互作用机理,分析其影响因素,采用振动台试验和数值模拟分析相结合的方法,对不同上部结构质量、不同输入波频率和加速度峰值输入下的桩-土-结构体系的水平动力反应规律进行了分析和讨论。试验地基土体模型为中硬土,剪切波速约为213 m/s;群桩基础由5根长1.35 m、直径0.1 m的基桩“十”字型布置;上部结构模型采用质量块模拟。研究结果表明:桩身的弯矩与剪力在桩-承台连接处最大,并且随深度增加而减小;随着上部结构质量的增加,土体与桩基的加速度反应增大,桩身的弯矩与剪力也增大;随着输入正弦波幅值和频率的增大,桩-土运动相互作用变大,桩身弯矩与剪力变大;最后比较各种影响因素引起的反应发现,上部结构质量的变化对桩-土-结构体系动力相互作用的影响最大,幅值的影响次之,频率的影响最小。 展开更多
关键词 振动台试验 数值模拟 正弦波荷载 群桩基础 桩-土运动相互作用
下载PDF
武汉四环线吴家山至沌口段软土地基病害处置技术研究
20
作者 黎华林 周小雄 +1 位作者 向锐 郑志勇 《建筑技术》 2024年第10期1198-1201,共4页
武汉四环线吴家山至沌口K81+700~K82+600段两侧鱼(藕)塘密布,软土较厚,地质条件差。软土地基经过清淤回填+土工格栅+碎石垫层+CFG桩方式初步治理后,发生路面裂缝等病害,主要是由于路基填土未得到有效压实、沉降,形成超静孔隙水压力,以... 武汉四环线吴家山至沌口K81+700~K82+600段两侧鱼(藕)塘密布,软土较厚,地质条件差。软土地基经过清淤回填+土工格栅+碎石垫层+CFG桩方式初步治理后,发生路面裂缝等病害,主要是由于路基填土未得到有效压实、沉降,形成超静孔隙水压力,以及降雨丰沛和重载车辆频繁行驶造成的,因此采用了注浆加固路基+抛石挤淤+反压护坡道的方式对裂缝进行治理。治理监测结果和长期的通车运行表明,路面稳定、软土地基病害得到有效处置。 展开更多
关键词 软土地基 病害处置 路面裂缝 CFG桩 注浆加固
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部