This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equi...This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equilibrium Methods (LEM) and Soil-Structure Interaction Methods (SSIM). While LEM methods, grounded in classical principles, provide valuable insights for preliminary design considerations, they may encounter limitations in addressing real-world complexities. In contrast, SSIM methods, including the SSI-SR approach, introduce precision and depth to the field. By employing numerical techniques such as Finite Element (FE) and Finite Difference (FD) analyses, these methods enable engineers to navigate the dynamics of soil-structure interaction. The exploration extends to SSI-FE, highlighting its essential role in civil engineering. By integrating Finite Element analysis with considerations for soil-structure interaction, the SSI-FE method offers a holistic understanding of how structures dynamically interact with their geotechnical environment. Throughout this exploration, the study dissects critical components governing SSIM methods, providing engineers with tools to navigate the intricate landscape of geotechnical design. The study acknowledges the significance of the Mohr-Coulomb constitutive model while recognizing its limitations, and guiding practitioners toward informed decision-making in geotechnical analyses. As the article concludes, it underscores the importance of continuous learning and innovation for the future of geotechnical engineering. With advancing technology and an evolving understanding of soil-structure interaction, the study remains committed to ensuring the safety, stability, and efficiency of geotechnical structures through cutting-edge design and analysis techniques.展开更多
Despite significant advancements in in situ test techniques,construction practices,understanding of rock joint and rock mass behaviours,and numerical analysis methods,the design of bored concrete cast-insitu piles in ...Despite significant advancements in in situ test techniques,construction practices,understanding of rock joint and rock mass behaviours,and numerical analysis methods,the design of bored concrete cast-insitu piles in rock is still largely based on the assessment of bearing capacity.However,for many of the rock conditions encountered,the bearing capacity of piles is a nebulous concept and a figment of the designer’s imagination.Even if it can be reasonably quantified,it has little,if any,significance to the performance of a pile in rock.The load carrying capacity of even low strength rock(in most situations)is far in excess of the strength of the structure(for example,a building column)transmitting the load.Unsatisfactory performance of a pile in rock is usually a displacement issue and is a function of rock mass stiffness rather than rock mass strength.In addition,poor pile performance is much more likely to result from poor construction practices than excessive displacement of the rock mass.Exceptions occur for footings that are undermined,or where unfavourable structure in the rock allows movement towards a free surface to occur.Standards,codes of practices,reference books and other sources of design information should focus foundation design in rock on displacement rather than strength performance.Ground investigations should measure rock mass stiffness and defect properties,as well as intact rock strength.This paper summarises the fundamental concepts relating to performance of piles in rock and provides a basis for displacement focused design of piles in rock.It also presents comments relating to how piles are modelled in widely used commercial finite element software for soil-structure interaction analysis,within the context of the back-analysis of a pile load test,and proposes recommendations for pile analysis and design.展开更多
This paper proposes an optimum design model for the offshore jacket platform considering multidesign criteria, multi-design constraints and the structure-pile-soil interaction, and gives an optimum design procedure in...This paper proposes an optimum design model for the offshore jacket platform considering multidesign criteria, multi-design constraints and the structure-pile-soil interaction, and gives an optimum design procedure in which the proposed optimum design model is used together with structural analysis software SAP91 and optimum algorithm software OPB1. The Chengbei (#)11 offshore platform, which lies in the Shengli oilfield, is designed by use of the above optimum design model. The results show that the optimum design model is stable, and it depends on neither the optimization algorithm nor initial values of design variables. All values of the objective function converge to the same minimum value, and the speed of convergence is high, showing that the proposed optimum design model is reasonable.展开更多
In order to explore the deformation of the pile body of the circular occluded pile retaining structure under earth pressure, this paper carries out on-site monitoring in combination with the actual project, and obtain...In order to explore the deformation of the pile body of the circular occluded pile retaining structure under earth pressure, this paper carries out on-site monitoring in combination with the actual project, and obtains the deformation characteristics and change rules of the occluded pile by measuring the strain and displacement of the pile body. The research conclusion can provide a certain reference value for the pile body design of bite pile in similar projects.展开更多
文摘This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equilibrium Methods (LEM) and Soil-Structure Interaction Methods (SSIM). While LEM methods, grounded in classical principles, provide valuable insights for preliminary design considerations, they may encounter limitations in addressing real-world complexities. In contrast, SSIM methods, including the SSI-SR approach, introduce precision and depth to the field. By employing numerical techniques such as Finite Element (FE) and Finite Difference (FD) analyses, these methods enable engineers to navigate the dynamics of soil-structure interaction. The exploration extends to SSI-FE, highlighting its essential role in civil engineering. By integrating Finite Element analysis with considerations for soil-structure interaction, the SSI-FE method offers a holistic understanding of how structures dynamically interact with their geotechnical environment. Throughout this exploration, the study dissects critical components governing SSIM methods, providing engineers with tools to navigate the intricate landscape of geotechnical design. The study acknowledges the significance of the Mohr-Coulomb constitutive model while recognizing its limitations, and guiding practitioners toward informed decision-making in geotechnical analyses. As the article concludes, it underscores the importance of continuous learning and innovation for the future of geotechnical engineering. With advancing technology and an evolving understanding of soil-structure interaction, the study remains committed to ensuring the safety, stability, and efficiency of geotechnical structures through cutting-edge design and analysis techniques.
文摘Despite significant advancements in in situ test techniques,construction practices,understanding of rock joint and rock mass behaviours,and numerical analysis methods,the design of bored concrete cast-insitu piles in rock is still largely based on the assessment of bearing capacity.However,for many of the rock conditions encountered,the bearing capacity of piles is a nebulous concept and a figment of the designer’s imagination.Even if it can be reasonably quantified,it has little,if any,significance to the performance of a pile in rock.The load carrying capacity of even low strength rock(in most situations)is far in excess of the strength of the structure(for example,a building column)transmitting the load.Unsatisfactory performance of a pile in rock is usually a displacement issue and is a function of rock mass stiffness rather than rock mass strength.In addition,poor pile performance is much more likely to result from poor construction practices than excessive displacement of the rock mass.Exceptions occur for footings that are undermined,or where unfavourable structure in the rock allows movement towards a free surface to occur.Standards,codes of practices,reference books and other sources of design information should focus foundation design in rock on displacement rather than strength performance.Ground investigations should measure rock mass stiffness and defect properties,as well as intact rock strength.This paper summarises the fundamental concepts relating to performance of piles in rock and provides a basis for displacement focused design of piles in rock.It also presents comments relating to how piles are modelled in widely used commercial finite element software for soil-structure interaction analysis,within the context of the back-analysis of a pile load test,and proposes recommendations for pile analysis and design.
基金National Natural Science Foundation of China(Grant No.59895410)
文摘This paper proposes an optimum design model for the offshore jacket platform considering multidesign criteria, multi-design constraints and the structure-pile-soil interaction, and gives an optimum design procedure in which the proposed optimum design model is used together with structural analysis software SAP91 and optimum algorithm software OPB1. The Chengbei (#)11 offshore platform, which lies in the Shengli oilfield, is designed by use of the above optimum design model. The results show that the optimum design model is stable, and it depends on neither the optimization algorithm nor initial values of design variables. All values of the objective function converge to the same minimum value, and the speed of convergence is high, showing that the proposed optimum design model is reasonable.
文摘In order to explore the deformation of the pile body of the circular occluded pile retaining structure under earth pressure, this paper carries out on-site monitoring in combination with the actual project, and obtains the deformation characteristics and change rules of the occluded pile by measuring the strain and displacement of the pile body. The research conclusion can provide a certain reference value for the pile body design of bite pile in similar projects.