The pile responses induced by adjacent tunnel excavation have been a hot research topic in geotechnical engineering.Tunnel excavation may exert disturbance to the surrounding soil mass and then influence the adjacent ...The pile responses induced by adjacent tunnel excavation have been a hot research topic in geotechnical engineering.Tunnel excavation may exert disturbance to the surrounding soil mass and then influence the adjacent pile foundations.In this paper,the random finite difference analysis considering the spatial variations of soil properties is conducted to explore the effect of tunnel excavation on the adjacent pile response by varying the distance of pile away from the tunnel centerline(D),the pile length(L),the pile diameter(d_(p)),the tunnel depth(h),and the anisotropic ratio between the horizontal and the vertical scales of fluctuation(δ_(x)/δ_(y)).A set of pile response curves are developed to assess the influence of tunnel excavation on the adjacent passive pile foundations in spatially variable clays and provide guidelines for the tunnel excavation in the complex constructed environment.展开更多
Dynamic soil−pile−superstructure interaction is crucial for understanding pile behavior in earthquake-prone ground.Evaluating the safety of piles requires determining the seismic bending moment caused by combined iner...Dynamic soil−pile−superstructure interaction is crucial for understanding pile behavior in earthquake-prone ground.Evaluating the safety of piles requires determining the seismic bending moment caused by combined inertial and kinematic interactions,which is challenging.This paper addresses this problem through numerical simulations of piles in different soil sites,considering soil nonlinearity.Results reveal that the period of the soil site significantly affects the interaction among soil,piles,and structures.Bending moments in soft and hard soil sites exceed those in medium soil sites by more than twice.Deformation modes of piles exhibit distinct characteristics between hard and soft soil sites.Soft soil sites exhibit a singular inflection point,while hard soil sites show two inflection points.In soft soil sites,pile-soil kinematic interaction gradually increases bending moment from tip to head,with minor influence from superstructure’s inertial interaction.In hard soil sites,significant inertial effects from soil,even surpassing pile-soil kinematic effects near the tip,lead to reversed superposition bending moment.Superstructure’s inertial interaction notably impacts pile head in hard soil sites.A simplified coupling method is proposed using correlation coefficient to represent inertial and kinematic interactions.These findings provide insights into complex seismic interactions among soil,piles,and structures.展开更多
This paper presents an assessment of the influence of the lagging distance between two horizontal tunnel faces of the side-by-side twin tunnels on the responses of the adjacent existing single pile by a series of thre...This paper presents an assessment of the influence of the lagging distance between two horizontal tunnel faces of the side-by-side twin tunnels on the responses of the adjacent existing single pile by a series of three-dimensional numerical analyses.Two different relative positions between the pile tip and the tunnel are considered to cover the short and long pile behaviors.The responses of the existing pile in terms of pile head settlement,axial force,lateral movement and bending moment are considered and discussed.The numerical results indicate that the lagging distance between twin tunnel faces significantly affects not only the soil movements but also the responses of the existing single pile.The critical case that produces unsatisfactory pile responses due to twin tunneling is when the lagging distance between the second tunnel and the preceding tunnel equals to the shield length.It is recommended that the lagging distance be not less than three times of shield length when the two tunnels need to be concurrently excavated.展开更多
Deep excavations in dense urban areas have caused damage to nearby existing structures in numerous past construction cases.Proper assessment is crucial in the initial design stages.This study develops equations to pre...Deep excavations in dense urban areas have caused damage to nearby existing structures in numerous past construction cases.Proper assessment is crucial in the initial design stages.This study develops equations to predict the existing pile bending moment and deflection produced by adjacent braced excavations.Influential parameters(i.e.,the excavation geometry,diaphragm wall thickness,pile geometry,strength and small-strain stiffness of the soil,and soft clay thickness)were considered and employed in the developed equations.It is practically unfeasible to obtain measurement data;hence,artificial data for the bending moment and deflection of existing piles were produced from well-calibrated numerical analyses of hypothetical cases,using the three-dimensional finite element method.The developed equations were established through a multiple linear regression analysis of the artificial data,using the transformation technique.In addition,the three-dimensional nature of the excavation work was characterized by considering the excavation corner effect,using the plane strain ratio parameter.The estimation results of the developed equations can provide satisfactory pile bending moment and deflection data and are more accurate than those found in previous studies.展开更多
An analytical method is developed to investigate the dynamic response of a pile subjected to harmonic vertical loading.The pile is modeled as a one-dimensional(1D)elastic rod.The elastic soil is divided into a homog...An analytical method is developed to investigate the dynamic response of a pile subjected to harmonic vertical loading.The pile is modeled as a one-dimensional(1D)elastic rod.The elastic soil is divided into a homogeneous half space underlying the base of pile and a series of infinitesimally thin layers along the vertical shaft of pile.The analytical solution for the soil-pile dynamic interaction problem is obtained by the method of Hankel transformation.The proposed solution is compared with the classical plane strain solution.Arithmetical examples are presented to demonstrate the sensitivity of the vertical impedance of the pile to relevant parameters.展开更多
基金National Natural Science Foundation of China(Grant Nos.52078086 and 52108299)the National Major Scientific Instruments Development Project of China(Grant no.5202780029)Program of Distinguished Young Scholars,Natural Science Foundation of Chongqing,China(cstc2020jcyj-jq0087).
文摘The pile responses induced by adjacent tunnel excavation have been a hot research topic in geotechnical engineering.Tunnel excavation may exert disturbance to the surrounding soil mass and then influence the adjacent pile foundations.In this paper,the random finite difference analysis considering the spatial variations of soil properties is conducted to explore the effect of tunnel excavation on the adjacent pile response by varying the distance of pile away from the tunnel centerline(D),the pile length(L),the pile diameter(d_(p)),the tunnel depth(h),and the anisotropic ratio between the horizontal and the vertical scales of fluctuation(δ_(x)/δ_(y)).A set of pile response curves are developed to assess the influence of tunnel excavation on the adjacent passive pile foundations in spatially variable clays and provide guidelines for the tunnel excavation in the complex constructed environment.
基金the National Natural Science Foundation of China(Grant No.42277163)for the financial support to this work.
文摘Dynamic soil−pile−superstructure interaction is crucial for understanding pile behavior in earthquake-prone ground.Evaluating the safety of piles requires determining the seismic bending moment caused by combined inertial and kinematic interactions,which is challenging.This paper addresses this problem through numerical simulations of piles in different soil sites,considering soil nonlinearity.Results reveal that the period of the soil site significantly affects the interaction among soil,piles,and structures.Bending moments in soft and hard soil sites exceed those in medium soil sites by more than twice.Deformation modes of piles exhibit distinct characteristics between hard and soft soil sites.Soft soil sites exhibit a singular inflection point,while hard soil sites show two inflection points.In soft soil sites,pile-soil kinematic interaction gradually increases bending moment from tip to head,with minor influence from superstructure’s inertial interaction.In hard soil sites,significant inertial effects from soil,even surpassing pile-soil kinematic effects near the tip,lead to reversed superposition bending moment.Superstructure’s inertial interaction notably impacts pile head in hard soil sites.A simplified coupling method is proposed using correlation coefficient to represent inertial and kinematic interactions.These findings provide insights into complex seismic interactions among soil,piles,and structures.
基金supports from King Mongkut’s University of Technology Thonburi(KMUTT),National Research Council of Thailand(NRCT)(Grant No.NRCT5-RSA63006)the Thailand Science Research and Innovation(TSRI)Basic Research Fund:Fiscal year 2023(project No.FRB660073/0164)(Advanced and Sustainable Construction Towards Thailand 4.0)+1 种基金supported by King Mongkut’s University of Technology North Bangkok and National Science,Research and Innovation Fund(NSRF)(Grant No.KMUTNB-FF-65-38)acknowledges the Thailand Science Research and Innovation Fund Chulalongkorn University(Grant No.BCG66210016).
文摘This paper presents an assessment of the influence of the lagging distance between two horizontal tunnel faces of the side-by-side twin tunnels on the responses of the adjacent existing single pile by a series of three-dimensional numerical analyses.Two different relative positions between the pile tip and the tunnel are considered to cover the short and long pile behaviors.The responses of the existing pile in terms of pile head settlement,axial force,lateral movement and bending moment are considered and discussed.The numerical results indicate that the lagging distance between twin tunnel faces significantly affects not only the soil movements but also the responses of the existing single pile.The critical case that produces unsatisfactory pile responses due to twin tunneling is when the lagging distance between the second tunnel and the preceding tunnel equals to the shield length.It is recommended that the lagging distance be not less than three times of shield length when the two tunnels need to be concurrently excavated.
基金the National Research Council of Thailand(NRCT)(No.NRCT5-RSA63006)the Thailand Science Research and Innovation(TSRI)Basic Research Fund:Fiscal year 2023 under project No.FRB660073/0164(Advanced and Sustainable Construction Towards Thailand 4.0)The authors would also like to thank the financial support provided by King Mongkut's University of Technology North Bangkok(KMUTNB)and the National Science,Research,and Innovation Fund(NSRF)of Thailand(Contract No.KMUTNB-FF-66-12).
文摘Deep excavations in dense urban areas have caused damage to nearby existing structures in numerous past construction cases.Proper assessment is crucial in the initial design stages.This study develops equations to predict the existing pile bending moment and deflection produced by adjacent braced excavations.Influential parameters(i.e.,the excavation geometry,diaphragm wall thickness,pile geometry,strength and small-strain stiffness of the soil,and soft clay thickness)were considered and employed in the developed equations.It is practically unfeasible to obtain measurement data;hence,artificial data for the bending moment and deflection of existing piles were produced from well-calibrated numerical analyses of hypothetical cases,using the three-dimensional finite element method.The developed equations were established through a multiple linear regression analysis of the artificial data,using the transformation technique.In addition,the three-dimensional nature of the excavation work was characterized by considering the excavation corner effect,using the plane strain ratio parameter.The estimation results of the developed equations can provide satisfactory pile bending moment and deflection data and are more accurate than those found in previous studies.
基金supported by the National Natural Science Foundation of China (no.51622803 and 51420105013)
文摘An analytical method is developed to investigate the dynamic response of a pile subjected to harmonic vertical loading.The pile is modeled as a one-dimensional(1D)elastic rod.The elastic soil is divided into a homogeneous half space underlying the base of pile and a series of infinitesimally thin layers along the vertical shaft of pile.The analytical solution for the soil-pile dynamic interaction problem is obtained by the method of Hankel transformation.The proposed solution is compared with the classical plane strain solution.Arithmetical examples are presented to demonstrate the sensitivity of the vertical impedance of the pile to relevant parameters.