期刊文献+
共找到4,695篇文章
< 1 2 235 >
每页显示 20 50 100
Lateral earth pressure of granular backfills on retaining walls with expanded polystyrene geofoam inclusions under limited surcharge loading 被引量:1
1
作者 Kewei Fan Guangqing Yang +2 位作者 Weilie Zou Zhong Han Yang Shen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1388-1397,共10页
Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,t... Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests. 展开更多
关键词 retaining wall Expanded polystyrene(EPS)geofoam Limited surcharge loading Lateral earth pressure Model test Prediction
下载PDF
Protective effect of retaining wall on rock avalanche:A case study of Nayong rock avalanche in China
2
作者 WANG Zhongfu SHI Fengge +3 位作者 HE Siming ZHANG Xusheng WANG Jingying LIU Enlong 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1215-1230,共16页
Rock avalanches are generally difficult to prevent and control due to their high velocities and the extensive destruction they cause.However,barrier structures constructed along the path of a rock avalanche can partia... Rock avalanches are generally difficult to prevent and control due to their high velocities and the extensive destruction they cause.However,barrier structures constructed along the path of a rock avalanche can partially mitigate the magnitudes and consequences of such catastrophic events.We selected a rock avalanche in Nayong County,Guizhou Province,China as a case to study the effect of the location and height of a retaining wall on the dynamic characteristics of rock avalanche by using both actual terrain-based laboratory-model tests and coupled PFC3D-FLAC3D numerical simulations.Our findings demonstrate that a retaining wall can largely block a rock avalanche and its protective efficacy is significantly influenced by the integrity of the retaining wall.Coupled numerical simulation can serve as a powerful tool for analyzing the interaction between a rock avalanche and a retaining wall,facilitating precise observations of its deformation and destruction.The impact-curve characteristics of the retaining wall depend upon whether or not the rock avalanche-induced destruction is taken into account.The location of the retaining wall exerts a greater influence on the outcome compared to the height and materials of the retaining wall,while implementing a stepped retaining-wall pattern in accordance with the terrain demonstrates optimal efficacy in controlling rock avalanche. 展开更多
关键词 Rock avalanche Laboratory model test retaining wall PFC^(3D) FLAC^(3D) Impact force
下载PDF
Limit state analysis of rigid retaining structures against seismically induced passive failure in heterogeneous soils
3
作者 Jianfeng Zhou Changbing Qin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1095-1105,共11页
Soils are not necessarily uniform and may present linearly varied or layered characteristics,for example the backfilled soils behind rigid retaining walls.In the presence of large lateral thrust imposed by arch bridge... Soils are not necessarily uniform and may present linearly varied or layered characteristics,for example the backfilled soils behind rigid retaining walls.In the presence of large lateral thrust imposed by arch bridge,passive soil failure is possible.A reliable prediction of passive earth pressure for the design of such wall is challenging in complicated soil strata,when adopting the conventional limit analysis method.In order to overcome the challenge for generating a kinematically admissible velocity field and a statically allowable stress field,finite element method is incorporated into limit analysis,forming finiteelement upper-bound(FEUB)and finite-element lower-bound(FELB)methods.Pseudo-static,original and modified pseudo-dynamic approaches are adopted to represent seismic acceleration inputs.After generating feasible velocity and stress fields within discretized elements based on specific criteria,FEUB and FELB formulations of seismic passive earth pressure(coefficient K_(P))can be derived from work rate balance equation and stress equilibrium.Resorting to an interior point algorithm,optimal upper and lower bound solutions are obtained.The proposed FEUB and FELB procedures are well validated by limit equilibrium as well as lower-bound and kinematic analyses.Parametric studies are carried out to investigate the effects of influential factors on seismic K_(P).Notably,true solution of K_(P) is well estimated based on less than 5%difference between FEUB and FELB solutions under such complex scenarios. 展开更多
关键词 retaining wall Passive earth pressure EARTHQUAKES Finite-element limit-analysis methods
下载PDF
Stability Analysis of Landfills Contained by Retaining Walls Using Continuous Stress Method
4
作者 Yufang Zhang Yingfa Lu +2 位作者 Yao Zhong Jian Li Dongze Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期357-381,共25页
An analytical method for determining the stresses and deformations of landfills contained by retaining walls is proposed in this paper.In the proposedmethod,the sliding resisting normal and tangential stresses of the ... An analytical method for determining the stresses and deformations of landfills contained by retaining walls is proposed in this paper.In the proposedmethod,the sliding resisting normal and tangential stresses of the retaining wall and the stress field of the sliding body are obtained considering the differential stress equilibrium equations,boundary conditions,and macroscopic forces and moments applied to the system,assuming continuous stresses at the interface between the sliding body and the retaining wall.The solutions to determine stresses and deformations of landfills contained by retaining walls are obtained using the Duncan-Chang and Hooke constitutive models.A case study of a landfill in the Hubei Province in China is used to validate the proposed method.The theoretical stress results for a slope with a retaining wall are compared with FEMresults,and the proposed theoreticalmethod is found appropriate for calculating the stress field of a slope with a retaining wall. 展开更多
关键词 Stress distribution strain distribution LANDFILL retaining wall numerical analysis
下载PDF
Seismic responses of the steel-strip reinforced soil retaining wall with full-height rigid facing from shaking table test 被引量:4
5
作者 CAO Li-cong FU Xiao +3 位作者 WANG Zhi-jia ZHOU Yong-yi LIU Fei-cheng ZHANG Jian-jing 《Journal of Mountain Science》 SCIE CSCD 2018年第5期1137-1152,共16页
To investigate the seismic response of the steel-strip reinforced soil retaining wall with fullheight rigid facing in terms of the acceleration in the backfill, dynamic earth pressure in the backfill, the displacement... To investigate the seismic response of the steel-strip reinforced soil retaining wall with fullheight rigid facing in terms of the acceleration in the backfill, dynamic earth pressure in the backfill, the displacements on the facing and the dynamic reinforcement strain distribution under different peak acceleration, a large 1-g shaking table test was performed on a reduced-scale reinforced-earth retaining wall model. It was observed that the acceleration response in non-strip region is greater than that in potential fracture region which is similar with the stability region under small earthquake,while the acceleration response in potential fracture region is greater than that in stability region in middle-upper of the wall under moderately strong earthquakes. The potential failure model of the rigid wall is rotating around the wall toe. It also was discovered that the Fourier spectra produced by the inputting white noises after seismic wave presents double peaks, rather than original single peak, and the frequency of the second peak trends to increase with increasing the PGA(peak ground amplitude) of the excitation which is greater than 0.4 g. Additionally,the non-liner distribution of strip strain along the strips was observed, and the distribution trend was not constant in different row. Soil pressure peak value in stability region is larger than that in potential fracture region. The wall was effective under 0.1 g-0.3 g seismic wave according to the analyses of the facing displacement and relative density. Also, it was discovered that the potential failure surface is corresponds to that in design code, but the area is larger. The results from the study can provide guidance for a more rational design of reinforced earth retaining walls with full-height rigid facing in the earthquake zone. 展开更多
关键词 Reinforced soil retaining walls Potentialfailure surface Full-height RIGID FACING STEEL STRIP Seismic behaviors 1-g SHAKING table test
下载PDF
Reliability analysis of retaining walls with multiple failure modes 被引量:2
6
作者 张道兵 孙志彬 朱川曲 《Journal of Central South University》 SCIE EI CAS 2013年第10期2879-2886,共8页
In order to reduce the errors of the reliability of the retaining wall structure in the establishment of function, in the estimation of parameter and algorithm, firstly, two new reliability and stability models of ant... In order to reduce the errors of the reliability of the retaining wall structure in the establishment of function, in the estimation of parameter and algorithm, firstly, two new reliability and stability models of anti-slipping and anti-overturning based on the upper-bound theory of limit analysis were established, and two kinds of failure modes were regarded as a series of systems with multiple correlated failure modes. Then, statistical characteristics of parameters of the retaining wall structure were inferred by maximal entropy principle. At last, the structural reliabilities of single failure mode and multiple failure modes were calculated by Monte Carlo method in MATLAB and the results were compared and analyzed on the sensitivity. It indicates that this method, with a high precision, is not only easy to program and quick in calculation, but also without the limit of nonlinear functions and non-normal random variables. And the results calculated by this method which applies both the limit analysis theory, maximal entropy principle and Monte Carlo method into analyzing the reliability of the retaining wall structures is more scientific, accurate and reliable, in comparison with those calculated by traditional method. 展开更多
关键词 retaining wall MAXIMAL entropy PRINCIPLE LIMIT analysis MONTE Carlo method multiple failure MODES reliability
下载PDF
Influence factors on the seismic behavior and deformation modes of gravity retaining walls 被引量:2
7
作者 ZHU Hong-wei YAO Ling-kan LI Jing 《Journal of Mountain Science》 SCIE CSCD 2019年第1期168-178,共11页
This study investigated the influence factors on the seismic response and deformation modes of retaining walls using large-scale model shaking table tests. Experimental results showed that the distribution of peak sei... This study investigated the influence factors on the seismic response and deformation modes of retaining walls using large-scale model shaking table tests. Experimental results showed that the distribution of peak seismic earth pressures along the height of a wall was a single peak value curve. The seismic earth pressures on a gravel soil retaining wall were larger than the pressures on the weathered granite and quartz retaining walls. Also, the peak seismic earth pressure increased with increases in the peak ground acceleration and the wall height. The measured seismic active earth pressures on a rock foundation retaining wall were larger than the calculated values, and the action position of resultant seismic pressure was higher than 0.33 H. In the soil foundation retaining wall, the measured seismic earth pressures were much smaller than the calculated values, while the action position was slightly higher than 0.33 H. The soil foundation retaining wall suffered base sliding and overturning under earthquake conditions, while overturning was the main failure mode for the rock foundation retaining walls. 展开更多
关键词 GRAVITY retaining wall EARTHQUAKE action SEISMIC behavior Deformation mode SHAKING TABLE test
下载PDF
Dynamic earth pressure on rigid retaining walls induced by a neighboring machine foundation,by the meshless local Petrov-Galerkin method 被引量:1
8
作者 Mehdi Veiskarami Arash Bahar Erfan Zandi Lak 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第4期647-661,共15页
Dynamic earth pressure induced by machine foundations on a neighboring retaining wall is analyzed with emphasis on factors which control the intensity and location of the design forces. The meshless local Petrov-Galer... Dynamic earth pressure induced by machine foundations on a neighboring retaining wall is analyzed with emphasis on factors which control the intensity and location of the design forces. The meshless local Petrov-Galerkin (MLPG) method is used to analyze the problem for a variety of retaining wall and machine foundation geometries. The soil medium is assumed to be homogeneous and visco-elastic. The machine foundation is idealized as a harmonic sinusoidal dynamic force often encountered in practice. A number of analyses have been made to reveal the effect of the loading frequency, the location and size of the foundation and the soil shear wave velocity on the distribution and magnitude of the dynamic earth pressure. Results indicate that there is a critical frequency and a critical location for which the passive pressure takes the maxima in the entire duration of the dynamic load. 展开更多
关键词 MLPG retaining wall dynamic loading visco-elastic soil machine foundation
下载PDF
DISTRIBUTION OF ACTIVE EARTH PRESSURE OF RETAINING WALL WITH WALL MOVEMENT OF ROTATION ABOUT TOP 被引量:1
9
作者 王元战 唐照评 郑斌 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第7期761-767,共7页
Based on the Coulomb's theory that the earth pressure against the back of a retaining wall is due to the thrust exerted by the sliding wedge of soil from the back of the wall to a plane which passes through the bo... Based on the Coulomb's theory that the earth pressure against the back of a retaining wall is due to the thrust exerted by the sliding wedge of soil from the back of the wall to a plane which passes through the bottom edge of the wall and has an inclination equal to the angle of θ, the theoretical answers to the unit earth pressure, the resultant earth pressure and the point of application of the resultant earth pressure on a retaining wall were obtained for the wall movement mode of rotation about top. The comparisons were made among the formula presented here, the formula for the wall movement mode of translation, the Coulomb's formula and some experimental observations. It is demonstrated that the magnitudes of the resultant earth pressures for the wall movement mode of rotation about top is equal to that determined by the formula for the wall movement mode of translation and the Coulomb's theory. But the distribution of the earth pressure and the points of application of the resultant earth pressures have significant difference. 展开更多
关键词 retaining wall rotation about top active earth pressure DISTRIBUTION point of application
下载PDF
Shaking table test of subgrade slope reinforced by gravity retaining wall with geogrids 被引量:2
10
作者 Qu Honglue Huang Xue +2 位作者 Gao Yanan Zhang Zhe Wang Chenxu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第3期715-727,共13页
Gravity retaining wall with geogrids has showed excellent seismic performance from Wenchuan great earthquake.However,seismic damage mechanism of this kind of wall is not sufficiently clear.In view of this,a large shak... Gravity retaining wall with geogrids has showed excellent seismic performance from Wenchuan great earthquake.However,seismic damage mechanism of this kind of wall is not sufficiently clear.In view of this,a large shaking table test of the gravity retaining wall with geogrids to reinforce the subgrade slope was carried out,and based on the HilbertHuang transform and the marginal spectrum theory,the energy identification method of the slope dynamic failure mode was studied.The results show that the geogrids can effectively reduce displacement and rotation of the retaining wall,and it can effectively absorb the energy of the ground movement when combined with the surrounding soil.In addition,it also reveals the failure development of the gravity retaining wall with geogrids to reinforce the subgrade slope.The damage started in the deep zone near the geogrids,and then gradually extended to the surface of the subgrade slope and other zones,finally formed a continuous failure surface along the geogrids.The analysis results of the failure mode identified by the Hilbert marginal spectrum are in good consistency with the experimental results,which prove that the Hilbert marginal spectrum can be applied to obtain the seismic damage mechanism of slope. 展开更多
关键词 gravity retaining wall with geogrids Hilbert-Huang transform marginal spectrum failure mode shaking table test
下载PDF
Settlement patterns of mountainous half-filled and half-cut widened subgrade with retaining wall 被引量:1
11
作者 FU Yong-guo JIANG Xin +1 位作者 GU Han-yan QIU Yan-jun 《Journal of Mountain Science》 SCIE CSCD 2021年第10期2791-2802,共12页
The settlement of widened highway subgrade in mountainous area is not only affected by the interaction between new and existing subgrade, but also seriously restricted by the external retaining wall. Based on the prac... The settlement of widened highway subgrade in mountainous area is not only affected by the interaction between new and existing subgrade, but also seriously restricted by the external retaining wall. Based on the practical engineering of half-filled and half-cut widened mountainous highway subgrade with external balance weight retaining wall(BWRW), a sophisticated finite element numerical model is established. The evolution law of subgrade settlement is revealed during the whole process of new subgrade filling and BWRW inclination after construction. The settlement component of subgrade is clarified considering whether the existing pavement continues to be used. The results show that the additional settlement caused by the BWRW inclination after construction cannot be ignored in the widening and reconstruction of mountainous highway subgrade. In addition, pursuant to the comprehensive design of subgrade and pavement, the component of subgrade settlement should be determined according to whether the existing pavement continues to be used, while considering the influence of BWRW inclination after construction. When the existing pavement continues to be used, the settlement of the existing subgrade is caused by the new subgrade filling and the BWRW inclination after construction. On the contrary, the settlement is only caused by the BWRW inclination after construction. 展开更多
关键词 Mountain road widening Balance weight retaining wall Subgrade settlement Pavement utilization retaining wall inclination
下载PDF
Development of a monitoring and warning system based on optical fiber sensing technology for masonry retaining walls and trees 被引量:1
12
作者 Peichen Wu Daoyuan Tan +4 位作者 Shaoqun Lin Wenbo Chen Jianhua Yin Numan Malik An Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1064-1076,共13页
Hong Kong has a long history of applying masonry retaining walls to provide horizontal platforms and stabilize man-made slopes.Due to the sub-tropical climate,some masonry retaining walls are colonized by trees.Extrem... Hong Kong has a long history of applying masonry retaining walls to provide horizontal platforms and stabilize man-made slopes.Due to the sub-tropical climate,some masonry retaining walls are colonized by trees.Extreme weather,such as typhoons and heavy rains,may cause rupture or root failure of those trees,thus resulting in instability of the retaining walls.A monitoring and warning system for the movement of masonry retaining walls and sway of trees has been designed with the application of fiber Bragg grating(FBG)sensing technology.The monitoring system is also equipped with a solar power system and 4G data transmission devices.The key functions of the proposed monitoring system include remote sensing and data access,early warning,and real-time data visualization.The setups and working principles of the monitoring systems and related transducers are introduced.The feasibility,accuracy,serviceability and reliability of this monitoring system have been checked by in-site calibration tests and four-month monitoring.Besides,a two-level interface has been developed for data visualization.The monitoring results show that the monitored masonry retaining wall had a reversible movement up to 2.5 mm during the monitoring period.Besides,it is found that the locations of the maximum strain on trees depend on the crown spread of trees. 展开更多
关键词 Masonry retaining walls TREE Monitoring Fiber Bragg grating(FBG)sensing Warning system
下载PDF
Seismic earth pressures on flexible cantilever retaining walls with deformable inclusions 被引量:3
13
作者 Ozgur L.Ertugrul Aurelian C.Trandafir 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第5期417-427,共11页
In this study, the results of 1-g shaking table tests performed on small-scale flexible cantilever wallmodels retaining composite backfill made of a deformable geofoam inclusion and granular cohesionlessmaterial were ... In this study, the results of 1-g shaking table tests performed on small-scale flexible cantilever wallmodels retaining composite backfill made of a deformable geofoam inclusion and granular cohesionlessmaterial were presented. Two different polystyrene materials were utilized as deformable inclusions.Lateral dynamic earth pressures and wall displacements at different elevations of the retaining wallmodel were monitored during the tests. The earth pressures and displacements of the retaining wallswith deformable inclusions were compared with those of the models without geofoam inclusions.Comparisons indicated that geofoam panels of low stiffness installed against the retaining wall modelaffect displacement and dynamic lateral pressure profile along the wall height. Depending on the inclusioncharacteristics and the wall flexibility, up to 50% reduction in dynamic earth pressures wasobserved. The efficiency of load and displacement reduction decreased as the flexibility ratio of the wallmodel increased. On the other hand, dynamic load reduction efficiency of the deformable inclusionincreased as the amplitude and frequency ratio of the seismic excitation increased. Relative flexibility ofthe deformable layer (the thickness and the elastic stiffness of the polystyrene material) played animportant role in the amount of load reduction. Dynamic earth pressure coefficients were compared withthose calculated with an analytical approach. Pressure coefficients calculated with this method werefound to be in good agreement with the results of the tests performed on the wall model having lowflexibility ratio. It was observed that deformable inclusions reduce residual wall stresses observed at theend of seismic excitation thus contributing to the post-earthquake stability of the retaining wall. Thegraphs presented within this paper regarding the dynamic earth pressure coefficients versus the wallflexibility and inclusion characteristics may serve for the seismic design of full-scale retaining walls withdeformable polystyrene inclusions. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Cantilever retaining wall Deformable geofoam panel 1-g shaking table tests Dynamic earth pressure Polystyrene Flexibility ratio Analytical approach
下载PDF
Mechanical Behaviors and Deformation Properties of Retaining Wall Formed by Grouting Mould-Bag Pile 被引量:1
14
作者 Shengcai Li Jun Tang Lin Guo 《Structural Durability & Health Monitoring》 EI 2019年第1期61-84,共24页
The simplified mechanical model and finite element model are established on the basis of the measured results and analysis of the grouting pile deformation monitoring,surface horizontal displacement and vertical displ... The simplified mechanical model and finite element model are established on the basis of the measured results and analysis of the grouting pile deformation monitoring,surface horizontal displacement and vertical displacement monitoring,deep horizontal displacement(inclinometer)monitoring,soil pressure monitoring and seepage pressure monitoring in the lower reaches of Wuan River regulation project in Shishi,Fujian Province.The mechanical behavior and deformation performance of mould-bag pile retaining wall formed after controlled cement grouting in the silty stratum of the test section are analyzed and compared.The results show that the use of controlled cement grouting mould-bag pile technology is to strengthen the soft stratum for sealing water and reinforcement,so that it can rock into a retaining wall,which can both retain soil and seal water with excellent effect.The control of cement grouting technology not only makes the soft soil rock in the range of retaining wall of mould-bag pile,but also makes a wide range of soil around the mould-bag pile squeeze and embed to compaction;and its cohesion and internal friction angle increased,so as to achieve the purpose of reducing soil pressure and improving mechanical and deformation properties of retaining wall. 展开更多
关键词 Controlled cement grouting technology grouting mould-bag pile retaining wall mechanical behaviors deformation properties
下载PDF
Pseudo-dynamic analysis of overturning stability of retaining wall 被引量:3
15
作者 王奎华 马少俊 吴文兵 《Journal of Central South University》 SCIE EI CAS 2011年第6期2085-2090,共6页
A new method was presented to determine the safety factor of wall stability against overturning based on pseudo-dynamic approach. In this time-dependent method, the actual dynamic effect with variation of time and pro... A new method was presented to determine the safety factor of wall stability against overturning based on pseudo-dynamic approach. In this time-dependent method, the actual dynamic effect with variation of time and propagation of shear and primary wave velocities through the backfills was considered. Planar failure surface was considered behind the retaining wall. The results were compared with those obtained from Mononobe-Okabe theory. It is found that there is a higher value of safety factor by the present dynamic analysis. The effects of wall inclination, wall friction angle, soil friction angle and horizontal and vertical seismic coefficients on the overturning stability of retaining wall were investigated. The parametric study shows that both horizontal and vertical seismic accelerations have decreasing effect on the overturning stability of retaining wall. 展开更多
关键词 倾覆稳定性 挡土墙 抗倾覆安全系数 时间依赖 地震加速度 动态方法 动态变化 地震系数
下载PDF
Study on the FEM design of reinforced earth retaining wall with geogrid 被引量:4
16
作者 Song Yakun Zheng Yingren +1 位作者 Tang Xiaosong Zhang Yufang 《Engineering Sciences》 EI 2010年第3期71-80,共10页
At present,limit equilibrium method is often adopted in the design of reinforced earth retaining wall. Geotechnical engineers home and abroad have done a lot of work to improve the traditional calculation methods in r... At present,limit equilibrium method is often adopted in the design of reinforced earth retaining wall. Geotechnical engineers home and abroad have done a lot of work to improve the traditional calculation methods in recent years,while there are lots of defects. This paper first identifies the location of failure surface and safety factor through the finite element program of PLAXIS and then analyses the influencing factors of the stability of reinforced earth retaining wall with geogrid. The authors adopt strength reduction FEM (finite element method)in the design and stability analysis of reinforced earth retaining wall and have achieved some satisfying results. Without any assumptions,the new design method can automatically judge the failure mode of reinforced earth retaining wall,consider the influence of axial tensile stiffness of the reinforcement stripe on the stability of retaining wall,identify reasonable distance and length of the reinforcement stripe,and choose suitable parameters of reinforcement stripe,including strength,stiffness and pseudo-friction coefficient which makes the design optimal. It is proved through the calculation examples that this method is more reasonable,reliable and economical in the design of reinforced earth retaining wall. 展开更多
关键词 加筋土挡墙 挡土墙设计 土工格栅 有限元分析 强度折减有限元法 稳定性分析 极限平衡方法 抗拉刚度
下载PDF
Active earth pressure acting on retaining wall considering anisotropic seepage effect 被引量:4
17
作者 HU Zheng YANG Zhong-xuan Stephen Philip WILKINSON 《Journal of Mountain Science》 SCIE CSCD 2017年第6期1202-1211,共10页
This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of ... This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of cohesionless and fully saturated sand with anisotropic permeability along the vertical and horizontal directions. The extremely unfavourable seepage flow on the back of the retaining wall due to heavy rainfall or other causes will dramatically increase the active earth pressure acting on the retaining walls, increasing the probability of instability. In this paper, an analytical solution to the Laplace differential governing equation is presented for seepage problems considering anisotropic permeability based on Fourier series expansion method. A good correlation is observed between this and the seepage forces along a planar surface generated via finite element analysis. The active earth pressure is calculated using Coulomb's earth pressure theory based on the calculated pore water pressures. The obtained solutions can be degenerated into Coulomb's formula when no seepage exists in the backfill. A parametric study on the influence of the degree of anisotropy in seepage flow on the distribution of active earth pressure behind the wall is conducted by varying ratios of permeability coefficients in the vertical and horizontal directions,showing that anisotropic seepage flow has a prominent impact on active earth pressure distribution. Other factors such as effective internal friction angle of soils and soil/wall friction conditions are also considered. 展开更多
关键词 主动土压力 渗流效应 各向异性 挡土墙 压力计算方法 傅立叶级数展开法 库仑土压力理论 渗透系数
下载PDF
Critical embedment depth of a rigid retaining wall against overturning in unsaturated soils considering intermediate principal stress and strength nonlinearity 被引量:4
18
作者 张常光 陈新栋 范文 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期944-954,共11页
The overturning stability is vital for the retaining wall design of foundation pits, where the surrounding soils are usually unsaturated due to water draining. Moreover, the intermediate principal stress does affect t... The overturning stability is vital for the retaining wall design of foundation pits, where the surrounding soils are usually unsaturated due to water draining. Moreover, the intermediate principal stress does affect the unsaturated soil strength; meanwhile, the relationship between the unsaturated soil strength and matric suction is nonlinear. This work is to present closed-form equations of critical embedment depth for a rigid retaining wall against overturning by means of moment equilibrium. Matric suction is considered to be distributed uniformly and linearly with depth. The unified shear strength formulation for unsaturated soils under the plane strain condition is adopted to characterize the intermediate principal stress effect, and strength nonlinearity is described by a hyperbolic model of suction angle. The result obtained is orderly series solutions rather than one specific answer; thus, it has wide theoretical significance and good applicability. The validity of this present work is demonstrated by comparing it with a lower bound solution. The traditional overturning designs for rigid retaining walls, in which the saturated soil mechanics neglecting matric suction or the unsaturated soil mechanics based on the Mohr-Coulomb criterion are employed, are special cases of the proposed result. Parametric studies about the intermediate principal stress, matric suction and its distributions along with two strength nonlinearity methods on a new defined critical buried coefficient are discussed. 展开更多
关键词 非饱和土力学 刚性挡土墙 非线性关系 临界埋深 土强度 抗倾覆 MOHR-COULOMB准则 应力和
下载PDF
Model Test and Numerical Analysis on Long-Term Mechanical Properties of Stepped Reinforced Retaining Wall 被引量:5
19
作者 汪承志 栾茂田 朱泽奇 《Transactions of Tianjin University》 EI CAS 2012年第1期62-68,共7页
Model tests and numerical analyses of stepped reinforced retaining wall were performed to investigate the effects of rheology of backfill and creep of geogrids on the long-term performance of the structure.The geogrid... Model tests and numerical analyses of stepped reinforced retaining wall were performed to investigate the effects of rheology of backfill and creep of geogrids on the long-term performance of the structure.The geogrid tensions,soil pressures,wall deformations and foundation pressure were measured during model construction and loading.A visco-elasto-plastic model and an empirical nonlinear visco-elastic model were utilized to simulate the stresses and deformations of geogrid-reinforced earth-retaining wall under long-term loads.By comparing test data with numerical results,it is shown that the foundation pressure distribution is nonlinear,and the lateral constraint of geogrids for backfill can cause a redistribution of foundation pressure.The curve of soil pressure is outside convex at each step initially,and it is close to the distribution for the case of vertical wall subsequently.The variation trend of geogrid tensions at different heights is obtained.Moreover,the failure mechanism and development mode of potential slip surface in retaining wall are proposed. 展开更多
关键词 加筋土挡墙 模型试验 数值分析 力学性能 加筋土挡土墙 土工格栅 台阶 粘弹塑性模型
下载PDF
Mechanical performance of a double-face reinforced retaining wall in an area disturbed by mining 被引量:5
20
作者 YU Guang-yun BAI Yong-sheng +1 位作者 SHENG Ping GUO Rui-ping 《Mining Science and Technology》 EI CAS 2009年第1期36-39,共4页
The application of a double-face reinforced retaining wall during road construction can reduce engineering costs, speed road paving and have a good influence on environment. An ABAQUS numerical model of a double-face ... The application of a double-face reinforced retaining wall during road construction can reduce engineering costs, speed road paving and have a good influence on environment. An ABAQUS numerical model of a double-face reinforced retaining wall was built. The influence of surface subsidence induced by mining was considered. A physical model test was also performed in the laboratory on a reinforced retaining wall. The influence of subsidence induced by mining was observed. The numerical results match measurements in the laboratory very well. The vertical pressure on the base of the retaining wall, the horizontal displacement of the wall and the horizontal soil pressure acting on the wall were analyzed. The differential settlement of the reinforced belt and axial forces in the wall were also studied. 展开更多
关键词 机械性能 双面加强挡土墙 地下开采 有限元法 物理模型试验
下载PDF
上一页 1 2 235 下一页 到第
使用帮助 返回顶部