Evidence from recent earthquakes has shown destructive consequences of fault-induced permanent ground movement on structures.Such observations have increased the demand for improvements in the design of structures tha...Evidence from recent earthquakes has shown destructive consequences of fault-induced permanent ground movement on structures.Such observations have increased the demand for improvements in the design of structures that are dramatically vulnerable to surface fault ruptures.In this study a novel connection between the raft and the piles is proposed to mitigate the hazards associated with a normal fault on pile-raft systems by means of 3D finite element(FE)modeling.Before embarking on the parametric study,the strain-softening constitutive law used for numerical modeling of the sand has been validated against centrifuge test results.The exact location of the fix-head and unconnected pile-raft systems relative to the outcropping fault rupture in the free-field is parametrically investigated,revealing different failure mechanisms.The performance of the proposed connection for protecting the pile-raft system against normal fault-induced deformations is assessed by comparing the geotechnical and structural responses of both types of foundation.The results indicate that the pocket connection can relatively reduce the cap rotation and horizontal and vertical displacements of the raft in most scenarios.The proposed connection decreases the bending moment response of the piles to their bending moment capacity,verging on a fault offset of 0.6 m at bedrock.展开更多
Research to reliably predict the seismic response of nuclear power stations with a pile-raft foundation is needed to meet the high safety requirements of nuclear power stations.In this study,a scaled superstructure wi...Research to reliably predict the seismic response of nuclear power stations with a pile-raft foundation is needed to meet the high safety requirements of nuclear power stations.In this study,a scaled superstructure with a 4×3 pile-raft foundation,which is constructed in Shanxi kaolin clay,is modelled.Accordingly,the characteristics of seismic response for nuclear power stations with a pile-raft foundation are analyzed using dynamic centrifuge tests.In particular,multiple earthquake motions with different magnitudes and frequency properties are utilized to map the relationship between structural response and properties of earthquake motions.The results show that the seismic response of the soil,raft,and structure are significantly affected by the natural frequency and magnitude of the earthquake motion.The soil surface acceleration is lower than the raft acceleration.The results provide a reliable reference to better understand the seismic response of nuclear power stations.展开更多
The lateral response of combined pile-raft foundations(CPRFs)adjacent to tunnel excavation is a challenging problem owing to the complexity of the pile-raft connections.In current engineering practices,the impact of t...The lateral response of combined pile-raft foundations(CPRFs)adjacent to tunnel excavation is a challenging problem owing to the complexity of the pile-raft connections.In current engineering practices,the impact of these connections on the lateral performance of CPRFs is frequently overlooked,despite their importance.To address this issue,this study conducted three-dimensional finite element analyses to evaluate the contribution of pile-raft connections to the tunnelling-induced lateral performance of CPRFs in saturated clay.In the analysis,both passive and active loading at the pile head could be considered by varying the tunnel depth.Several parameter studies,such as relative pile-raft modulus,pile embedded modulus,pile embedded depths,and pile shaft skin friction,were conducted to determine the optimal design parameters for CPRFs.The results indicate that pile-raft connections significantly affect the tunnellinginduced deflections and bending moments of pile groups.Inspired by the results,a simplified design method,the pile-raft connection coefficient Kc was proposed.Additionally,the pile-head restraint percentage was established to make a relationship with the pile-raft connection coefficient in order to assess the pile-raft connection and guide the pile-raft design.In this paper,the recommended range value of Kc is 10–200 and the range value of pile-head restraint percentage is 24%–42%.展开更多
Micro steel pipe pile was used for existing foundation reinforcement and renovation.An energy micro pile-raft foundation equipped with heat exchange tube was constructed in silty clay.The diameter and the length of th...Micro steel pipe pile was used for existing foundation reinforcement and renovation.An energy micro pile-raft foundation equipped with heat exchange tube was constructed in silty clay.The diameter and the length of the energy micro pile are 160 mm and 13.0 m,respectively.A series of in situ thermal performance tests were carried out by controlling cycle heating,in which the inlet and outlet water temperatures,flow rate,and thermomechanical properties of the energy micro pile were measured.Combined with a numerical simulation method,the thermomechanical stresses and displacement of the raft were also analyzed and discussed.The energy micro pile-raft foundation was also analyzed for different combinations of energy piles and nonenergy piles in the group.Results show that the micro pile-raft foundation can provide sufficient heat exchange compared with other types of ground heat exchangers.Differential settlement at both the pile top and tip were observed for the groups that contained both energy piles and nonenergy piles.展开更多
基金Babol Noshirvani University of Technology under Grant No.P/M/1102。
文摘Evidence from recent earthquakes has shown destructive consequences of fault-induced permanent ground movement on structures.Such observations have increased the demand for improvements in the design of structures that are dramatically vulnerable to surface fault ruptures.In this study a novel connection between the raft and the piles is proposed to mitigate the hazards associated with a normal fault on pile-raft systems by means of 3D finite element(FE)modeling.Before embarking on the parametric study,the strain-softening constitutive law used for numerical modeling of the sand has been validated against centrifuge test results.The exact location of the fix-head and unconnected pile-raft systems relative to the outcropping fault rupture in the free-field is parametrically investigated,revealing different failure mechanisms.The performance of the proposed connection for protecting the pile-raft system against normal fault-induced deformations is assessed by comparing the geotechnical and structural responses of both types of foundation.The results indicate that the pocket connection can relatively reduce the cap rotation and horizontal and vertical displacements of the raft in most scenarios.The proposed connection decreases the bending moment response of the piles to their bending moment capacity,verging on a fault offset of 0.6 m at bedrock.
基金Supported by:Scientific Research Program of China General Nuclear Power Corporation(CGN)under Grant No.K-A2017.054Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant No.KYCX19_0093。
文摘Research to reliably predict the seismic response of nuclear power stations with a pile-raft foundation is needed to meet the high safety requirements of nuclear power stations.In this study,a scaled superstructure with a 4×3 pile-raft foundation,which is constructed in Shanxi kaolin clay,is modelled.Accordingly,the characteristics of seismic response for nuclear power stations with a pile-raft foundation are analyzed using dynamic centrifuge tests.In particular,multiple earthquake motions with different magnitudes and frequency properties are utilized to map the relationship between structural response and properties of earthquake motions.The results show that the seismic response of the soil,raft,and structure are significantly affected by the natural frequency and magnitude of the earthquake motion.The soil surface acceleration is lower than the raft acceleration.The results provide a reliable reference to better understand the seismic response of nuclear power stations.
基金funded by the National Natural Science Foundation of China(Grant No.51878157,52308341)the Natural Science Foundation of Jiangsu Province(Grant No.BK20181282)the China Scholarship Council(CSC202106090083).
文摘The lateral response of combined pile-raft foundations(CPRFs)adjacent to tunnel excavation is a challenging problem owing to the complexity of the pile-raft connections.In current engineering practices,the impact of these connections on the lateral performance of CPRFs is frequently overlooked,despite their importance.To address this issue,this study conducted three-dimensional finite element analyses to evaluate the contribution of pile-raft connections to the tunnelling-induced lateral performance of CPRFs in saturated clay.In the analysis,both passive and active loading at the pile head could be considered by varying the tunnel depth.Several parameter studies,such as relative pile-raft modulus,pile embedded modulus,pile embedded depths,and pile shaft skin friction,were conducted to determine the optimal design parameters for CPRFs.The results indicate that pile-raft connections significantly affect the tunnellinginduced deflections and bending moments of pile groups.Inspired by the results,a simplified design method,the pile-raft connection coefficient Kc was proposed.Additionally,the pile-head restraint percentage was established to make a relationship with the pile-raft connection coefficient in order to assess the pile-raft connection and guide the pile-raft design.In this paper,the recommended range value of Kc is 10–200 and the range value of pile-head restraint percentage is 24%–42%.
基金The work presented in this paper was supported by the National Natural Science Foundation of China(Nos.51778212,51922037).
文摘Micro steel pipe pile was used for existing foundation reinforcement and renovation.An energy micro pile-raft foundation equipped with heat exchange tube was constructed in silty clay.The diameter and the length of the energy micro pile are 160 mm and 13.0 m,respectively.A series of in situ thermal performance tests were carried out by controlling cycle heating,in which the inlet and outlet water temperatures,flow rate,and thermomechanical properties of the energy micro pile were measured.Combined with a numerical simulation method,the thermomechanical stresses and displacement of the raft were also analyzed and discussed.The energy micro pile-raft foundation was also analyzed for different combinations of energy piles and nonenergy piles in the group.Results show that the micro pile-raft foundation can provide sufficient heat exchange compared with other types of ground heat exchangers.Differential settlement at both the pile top and tip were observed for the groups that contained both energy piles and nonenergy piles.