The performance test of a CsI(Tl) crystal (70×27×23 mm3) was performed by applying the pulse shape discrimination technique for identification of light charged particles .The crystal is coupled to a photomul...The performance test of a CsI(Tl) crystal (70×27×23 mm3) was performed by applying the pulse shape discrimination technique for identification of light charged particles .The crystal is coupled to a photomultiplier tube during an experiment with 6He beam.The pulse waveform is fully recorded by employing a high precision digital oscilloscope.The fast and slow gates are used for the pulse shape discrimination and the best values for the gate widths were determined to be 0.5 μs and 1.67 μs,respectively.The 6He,4He and 3He are successfully discriminated with this technique.展开更多
To enhance the accuracy of 2πα and 2πβ particle surface emission rate measurements and address the identification issues of nuclides in conventional methods, this study introduces two artificial neural network(ANN...To enhance the accuracy of 2πα and 2πβ particle surface emission rate measurements and address the identification issues of nuclides in conventional methods, this study introduces two artificial neural network(ANN) algorithms: back-propagation(BP) and genetic algorithm-based back-propagation(GA-BP). These algorithms classify pulse signals from distinct α and β particles. Their discrimination efficacy is assessed by simulating standard pulse signals and those produced by contaminated sources, mixing α and β particles within the detector. This study initially showcases energy spectrum measurement outcomes, subsequently tests the ANNs on the measurement and validation datasets, and contrasts the pulse shape discrimination efficacy of both algorithms. Experimental findings reveal that the proportional counter's energy resolution is not ideal, thus rendering energy analysis insufficient for distinguishing between 2πα and 2πβ particles. The BP neural network realizes approximately 99% accuracy for 2πα particles and approximately 95% for 2πβ particles, thus surpassing the GA-BP's performance. Additionally, the results suggest enhancing β particle discrimination accuracy by increasing the digital acquisition card's threshold lower limit. This study offers an advanced solution for the 2πα and 2πβ surface emission rate measurement method, presenting superior adaptability and scalability over conventional techniques.展开更多
In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,r...In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,radiation pulse signals were pre-processed using a Fourier filter to reduce the original noise in the signals,whereas in the second group,the original noise was left untouched to simulate an extremely high-noise scenario.For each part,artificial Gaussian noise with different intensity levels was added to the signals prior to the discrimination process.In the aforementioned conditions,the performance of the PCNN was evaluated and compared with five other commonly used methods of n-γdiscrimination:(1)zero crossing,(2)charge comparison,(3)vector projection,(4)falling edge percentage slope,and(5)frequency gradient analysis.The experimental results showed that the PCNN method significantly outperforms other methods with outstanding FoM-value at all noise levels.Furthermore,the fluctuations in FoM-value of PCNN were significantly better than those obtained via other methods at most noise levels and only slightly worse than those obtained via the charge comparison and zerocrossing methods under extreme noise conditions.Additionally,the changing patterns and fluctuations of the FoMvalue were evaluated under different noise conditions.Hence,based on the results,the parameter selection strategy of the PCNN was presented.In conclusion,the PCNN method is suitable for use in high-noise application scenarios for n-γdiscrimination because of its stability and remarkable discrimination performance.It does not rely on strict parameter settings and can realize satisfactory performance over a wide parameter range.展开更多
The Na I:Tl scintillator is an innovative material for dual-gamma-ray and neutron detection with a low ^(6)Li concentration.To achieve real-time n/γ discrimination,a zero-crossing time comparison algorithm based on t...The Na I:Tl scintillator is an innovative material for dual-gamma-ray and neutron detection with a low ^(6)Li concentration.To achieve real-time n/γ discrimination,a zero-crossing time comparison algorithm based on trapezoidal pulse shaping was developed.The algorithm can operate efficiently at low sampling rates and was implemented on a single-probe portable digital n/γ discriminator based on a field-programmable gate array.The discriminator and Na I:Tl,^(6)Li detector were tested in a neutron-gamma mixed field produced by an ^(241)Am-Be neutron source to evaluate the performance of the algorithm.The figure of merits was measured as 2.88 at a sampling rate of 50 MHz,indicating that the discriminator with its embedded algorithm has a promising n/γ discrimination capability.Efficient discrimination at sampling rates of 40 and 25 MHz demonstrates that the capability of this method is not limited by low sampling rates.展开更多
Linear Alkyl Benzene (LAB) is a promising liquid scintillator solvent in neutrino experiments because it has many appealing properties. The timing properties of LAB-based liquid scintillator have been studied throug...Linear Alkyl Benzene (LAB) is a promising liquid scintillator solvent in neutrino experiments because it has many appealing properties. The timing properties of LAB-based liquid scintillator have been studied through ultraviolet and ionization excitation in this study. The decay time of LAB, PPO and bis-MSB is found to be 48.6 ns, 1.55 ns and 1.5 ns, respectively. A model can describe the absorption and re-emission process between PPO and bis-MSB perfectly. The energy transfer time between LAB and PPO with different concentrations can be obtained via another model. We also show that the LAB-based liquid scintillator has good (n, γ) and (α, γ) discrimination power.展开更多
Neutron usually appears with gamma,which is requiring the detector has the capability of n gamma discrimination.Pulse shape discrimination(PSD)is a common approach of n,gamma judgment,but required a complex process to...Neutron usually appears with gamma,which is requiring the detector has the capability of n gamma discrimination.Pulse shape discrimination(PSD)is a common approach of n,gamma judgment,but required a complex process to select a suitable discrimination factor,and poor performance in the low energy range.A method based on the time interval of adjacent Signals was disrupted and adopted to compare to pulse shape discrimination in the fast neutron detection method.A good agreement between the adopted method and PSD method was achieved,including the total count ratio and neutron count ratio.The comparison proves the correctness of the theoretical derivation and validates the method in practice.The advantages and limitations of the method based on time Interval of adjacent signals were analyzed.The method provides an effective way to confirm the calibration of the neutron detection of a liquid scintillation detector.Also,as a simple way only requiring the time information about events,the described method has large application potential in some case of fast neutron flux or intensity measurement.展开更多
A new neutron-gamma discriminator based on the support vector machine(SVM) method is proposed to improve the performance of the time-of-flight neutron spectrometer. The neutron detector is an EJ-299-33 plastic scintil...A new neutron-gamma discriminator based on the support vector machine(SVM) method is proposed to improve the performance of the time-of-flight neutron spectrometer. The neutron detector is an EJ-299-33 plastic scintillator with pulse-shape discrimination(PSD) property. The SVM algorithm is implemented in field programmable gate array(FPGA) to carry out the real-time sifting of neutrons in neutron-gamma mixed radiation fields. This study compares the ability of the pulse gradient analysis method and the SVM method. The results show that this SVM discriminator can provide a better discrimination accuracy of 99.1%. The accuracy and performance of the SVM discriminator based on FPGA have been evaluated in the experiments. It can get a figure of merit of 1.30.展开更多
基金Supported by National Basic Research Program (973 Program) of China (2007CB815002)NSFC (10775003,10827505)
文摘The performance test of a CsI(Tl) crystal (70×27×23 mm3) was performed by applying the pulse shape discrimination technique for identification of light charged particles .The crystal is coupled to a photomultiplier tube during an experiment with 6He beam.The pulse waveform is fully recorded by employing a high precision digital oscilloscope.The fast and slow gates are used for the pulse shape discrimination and the best values for the gate widths were determined to be 0.5 μs and 1.67 μs,respectively.The 6He,4He and 3He are successfully discriminated with this technique.
文摘To enhance the accuracy of 2πα and 2πβ particle surface emission rate measurements and address the identification issues of nuclides in conventional methods, this study introduces two artificial neural network(ANN) algorithms: back-propagation(BP) and genetic algorithm-based back-propagation(GA-BP). These algorithms classify pulse signals from distinct α and β particles. Their discrimination efficacy is assessed by simulating standard pulse signals and those produced by contaminated sources, mixing α and β particles within the detector. This study initially showcases energy spectrum measurement outcomes, subsequently tests the ANNs on the measurement and validation datasets, and contrasts the pulse shape discrimination efficacy of both algorithms. Experimental findings reveal that the proportional counter's energy resolution is not ideal, thus rendering energy analysis insufficient for distinguishing between 2πα and 2πβ particles. The BP neural network realizes approximately 99% accuracy for 2πα particles and approximately 95% for 2πβ particles, thus surpassing the GA-BP's performance. Additionally, the results suggest enhancing β particle discrimination accuracy by increasing the digital acquisition card's threshold lower limit. This study offers an advanced solution for the 2πα and 2πβ surface emission rate measurement method, presenting superior adaptability and scalability over conventional techniques.
基金supported by the National Natural Science Foundation of China(Nos.4210040255,U19A2086)the Sichuan Science and Technology Program(No.2021JDRC0108)。
文摘In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,radiation pulse signals were pre-processed using a Fourier filter to reduce the original noise in the signals,whereas in the second group,the original noise was left untouched to simulate an extremely high-noise scenario.For each part,artificial Gaussian noise with different intensity levels was added to the signals prior to the discrimination process.In the aforementioned conditions,the performance of the PCNN was evaluated and compared with five other commonly used methods of n-γdiscrimination:(1)zero crossing,(2)charge comparison,(3)vector projection,(4)falling edge percentage slope,and(5)frequency gradient analysis.The experimental results showed that the PCNN method significantly outperforms other methods with outstanding FoM-value at all noise levels.Furthermore,the fluctuations in FoM-value of PCNN were significantly better than those obtained via other methods at most noise levels and only slightly worse than those obtained via the charge comparison and zerocrossing methods under extreme noise conditions.Additionally,the changing patterns and fluctuations of the FoMvalue were evaluated under different noise conditions.Hence,based on the results,the parameter selection strategy of the PCNN was presented.In conclusion,the PCNN method is suitable for use in high-noise application scenarios for n-γdiscrimination because of its stability and remarkable discrimination performance.It does not rely on strict parameter settings and can realize satisfactory performance over a wide parameter range.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(No.12075308).
文摘The Na I:Tl scintillator is an innovative material for dual-gamma-ray and neutron detection with a low ^(6)Li concentration.To achieve real-time n/γ discrimination,a zero-crossing time comparison algorithm based on trapezoidal pulse shaping was developed.The algorithm can operate efficiently at low sampling rates and was implemented on a single-probe portable digital n/γ discriminator based on a field-programmable gate array.The discriminator and Na I:Tl,^(6)Li detector were tested in a neutron-gamma mixed field produced by an ^(241)Am-Be neutron source to evaluate the performance of the algorithm.The figure of merits was measured as 2.88 at a sampling rate of 50 MHz,indicating that the discriminator with its embedded algorithm has a promising n/γ discrimination capability.Efficient discrimination at sampling rates of 40 and 25 MHz demonstrates that the capability of this method is not limited by low sampling rates.
基金Supported by National Natural Science Foundation of China (10890094, 11011120080)
文摘Linear Alkyl Benzene (LAB) is a promising liquid scintillator solvent in neutrino experiments because it has many appealing properties. The timing properties of LAB-based liquid scintillator have been studied through ultraviolet and ionization excitation in this study. The decay time of LAB, PPO and bis-MSB is found to be 48.6 ns, 1.55 ns and 1.5 ns, respectively. A model can describe the absorption and re-emission process between PPO and bis-MSB perfectly. The energy transfer time between LAB and PPO with different concentrations can be obtained via another model. We also show that the LAB-based liquid scintillator has good (n, γ) and (α, γ) discrimination power.
文摘Neutron usually appears with gamma,which is requiring the detector has the capability of n gamma discrimination.Pulse shape discrimination(PSD)is a common approach of n,gamma judgment,but required a complex process to select a suitable discrimination factor,and poor performance in the low energy range.A method based on the time interval of adjacent Signals was disrupted and adopted to compare to pulse shape discrimination in the fast neutron detection method.A good agreement between the adopted method and PSD method was achieved,including the total count ratio and neutron count ratio.The comparison proves the correctness of the theoretical derivation and validates the method in practice.The advantages and limitations of the method based on time Interval of adjacent signals were analyzed.The method provides an effective way to confirm the calibration of the neutron detection of a liquid scintillation detector.Also,as a simple way only requiring the time information about events,the described method has large application potential in some case of fast neutron flux or intensity measurement.
基金partially supported by the National Science and Technology Major Project of Ministry of Science and Technology of China (Grant Nos. 2014GB109003 and 2015GB111002)National Natural Science Foundation of China (Grant Nos. 11375195, 11575184, 11375004 and 11775068)
文摘A new neutron-gamma discriminator based on the support vector machine(SVM) method is proposed to improve the performance of the time-of-flight neutron spectrometer. The neutron detector is an EJ-299-33 plastic scintillator with pulse-shape discrimination(PSD) property. The SVM algorithm is implemented in field programmable gate array(FPGA) to carry out the real-time sifting of neutrons in neutron-gamma mixed radiation fields. This study compares the ability of the pulse gradient analysis method and the SVM method. The results show that this SVM discriminator can provide a better discrimination accuracy of 99.1%. The accuracy and performance of the SVM discriminator based on FPGA have been evaluated in the experiments. It can get a figure of merit of 1.30.