期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Dynamic Pressure Feedback Orifice on Stability of Cartridge-Type Hydraulic Pilot-Operated Relief Valve
1
作者 Yaobao Yin Dong Wang +1 位作者 Junyong Fu Hong-chao Jian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期227-241,共15页
Current research on pilot-operated relief valve stability is primarily conducted from the perspective of system dynamics or stability criteria,and most of the existing conclusions focus on the spool shape,damping hole... Current research on pilot-operated relief valve stability is primarily conducted from the perspective of system dynamics or stability criteria,and most of the existing conclusions focus on the spool shape,damping hole size,and pulsation frequency of the pump.However,the essential factors pertaining to the unstable vibration of relief valves remain ambiguous.In this study,the dynamic behavior of a pilot-operated relief valve is investigated using the frequency-domain method.The result suggests that the dynamic pressure feedback orifice is vital to the dynamic characteristics of the valve.A large orifice has a low flow resistance.In this case,the fluid in the main spring chamber flows freely,which is not conducive to the stability of the relief valve.However,a small orifice may create significant flow resistance,thus restricting fluid flow.In this case,the oil inside the main valve spring chamber is equivalent to a high-stiffness liquid spring.The main mass-spring vibration system has a natural frequency that differs significantly from the operating frequency of the relief valve,which is conducive to the stability of the relief valve.Good agreement is obtained between the theoretical analysis and experiments.The results indicate that designing a dynamic pressure feedback orifice of an appropriate size is beneficial to improving the stability of hydraulic pilot-operated relief valves.In addition,the dynamic pressure feedback orifice reduces the response speed of the relief valve.This study comprehensively considers the stability,rapidity,and immunity of relief valves and expands current investigations into the dynamic characteristics of relief valves from the perspective of classical control theory,thus revealing the importance of different parameters. 展开更多
关键词 pilot-operated relief valve Dynamic pressure feedback orifice STABILITY RAPIDITY IMMUNITY
下载PDF
Dynamic performance and control accuracy of a novel proportional valve with a switching technology-controlled pilot stage 被引量:3
2
作者 Qi ZHONG En-guang XU +3 位作者 Ti-wei JIA Hua-yong YANG Bin ZHANG Yan-biao LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第4期272-285,共14页
Two-stage directional valves usually employ proportional pilot control technology,which has the disadvantages of dead zones,leakage,and the large moving mass of the pilot valve.It is difficult,therefore,to achieve fas... Two-stage directional valves usually employ proportional pilot control technology,which has the disadvantages of dead zones,leakage,and the large moving mass of the pilot valve.It is difficult,therefore,to achieve fast-response performance of the main valve.In order to overcome this problem,a switching pilot technology that employs two independent high-speed on/off valves(HSVs)is proposed to replace the traditional pilot proportional valve.Due to the rapid switching characteristics of HSVs,the dead zone of the pilot stage is avoided,and the dynamic response performance of the main valve is improved.The experiments indicate that the switching frequency of the pilot HSVs and supply pressure of the pilot stage have a very large effect on the dynamic performance and control accuracy of the main valve.Increasing the switching frequency of the pilot HSVs is helpful for improving main-valve control accuracy.The larger supply pressure of the pilot stage can achieve a faster dynamic performance of the main valve while causing larger static errors.The results show that the switching pilot technology can clearly improve the static and dynamic performances of the main valve.With the increase of pilot supply pressure,the step rise time is reduced from 21.4 ms to 16.8 ms,and the dynamic performance of the main valve is improved by 21.5%.With the increase of pilot switching frequency,the steady-state error decreases from 24μm to 20μm,and the control accuracy of the main valve is improved by 16.7%. 展开更多
关键词 pilot-operated proportional valve Switching pilot stage High-speed on/off valve(HSV) Dynamic performance Control accuracy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部