The estimation of residual displacements in a structure due to an anticipated earthquake event has increasingly become an important component of performance-based earthquake engineering because controlling these displ...The estimation of residual displacements in a structure due to an anticipated earthquake event has increasingly become an important component of performance-based earthquake engineering because controlling these displacements plays an important role in ensuring cost-feasible or cost-effective repairs in a damaged structure after the event.An attempt is made in this study to obtain statistical estimates of constant-ductility residual displacement spectra for bilinear and pinching oscillators with 5%initial damping,directly in terms of easily available seismological,site,and model parameters.None of the available models for the bilinear and pinching oscillators are useful when design spectra for a seismic hazard at a site are not available.The statistical estimates of a residual displacement spectrum are proposed in terms of earthquake magnitude,epicentral distance,site geology parameter,and three model parameters for a given set of ductility demand and a hysteretic energy capacity coefficient in the case of bilinear and pinching models,as well as for a given set of pinching parameters for displacement and strength at the breakpoint in the case of pinching model alone.The proposed scaling model is applicable to horizontal ground motions in the western U.S.for earthquake magnitudes less than 7 or epicentral distances greater than 20 km.展开更多
作为一门新兴的学科领域,数据科学的科学性受到了关注且其科学问题未明确提出。文中从科学研究范式及方法论、可证伪性和可再现性、科学精神及快速迭代以及科学研究纲领及理论体系4个方面探讨了数据科学的“科学性”,并解答了为什么数...作为一门新兴的学科领域,数据科学的科学性受到了关注且其科学问题未明确提出。文中从科学研究范式及方法论、可证伪性和可再现性、科学精神及快速迭代以及科学研究纲领及理论体系4个方面探讨了数据科学的“科学性”,并解答了为什么数据科学是一门新兴科学的问题。在此基础上,结合DIKW模型(DIKW Pyramid or Hierarchy)、DMP(Data-Model-Problem)模型、数据科学的统计学和机器学习方法论以及数据科学的流程与活动,提出了数据科学的7个核心科学问题:解释在先还是在后或无、问题对齐数据还是数据对齐问题、更加相信数据还是模型、更加重视性能还是可解释性、如何划分数据、如何用已知数据解决未知数据的问题、人在环路还是人出环路。最后,提出了数据科学研究的4点建议:聚焦数据科学本身的理论研究,推动数据的科学、技术和工程需要进一步分离和专业化,加强人工智能赋能的数据科学的理论与实践以及数据科学学科(Data Science as A Discipline)与学科中的数据科学(Data Science Within A Discipline)的联动。展开更多
文摘The estimation of residual displacements in a structure due to an anticipated earthquake event has increasingly become an important component of performance-based earthquake engineering because controlling these displacements plays an important role in ensuring cost-feasible or cost-effective repairs in a damaged structure after the event.An attempt is made in this study to obtain statistical estimates of constant-ductility residual displacement spectra for bilinear and pinching oscillators with 5%initial damping,directly in terms of easily available seismological,site,and model parameters.None of the available models for the bilinear and pinching oscillators are useful when design spectra for a seismic hazard at a site are not available.The statistical estimates of a residual displacement spectrum are proposed in terms of earthquake magnitude,epicentral distance,site geology parameter,and three model parameters for a given set of ductility demand and a hysteretic energy capacity coefficient in the case of bilinear and pinching models,as well as for a given set of pinching parameters for displacement and strength at the breakpoint in the case of pinching model alone.The proposed scaling model is applicable to horizontal ground motions in the western U.S.for earthquake magnitudes less than 7 or epicentral distances greater than 20 km.
文摘作为一门新兴的学科领域,数据科学的科学性受到了关注且其科学问题未明确提出。文中从科学研究范式及方法论、可证伪性和可再现性、科学精神及快速迭代以及科学研究纲领及理论体系4个方面探讨了数据科学的“科学性”,并解答了为什么数据科学是一门新兴科学的问题。在此基础上,结合DIKW模型(DIKW Pyramid or Hierarchy)、DMP(Data-Model-Problem)模型、数据科学的统计学和机器学习方法论以及数据科学的流程与活动,提出了数据科学的7个核心科学问题:解释在先还是在后或无、问题对齐数据还是数据对齐问题、更加相信数据还是模型、更加重视性能还是可解释性、如何划分数据、如何用已知数据解决未知数据的问题、人在环路还是人出环路。最后,提出了数据科学研究的4点建议:聚焦数据科学本身的理论研究,推动数据的科学、技术和工程需要进一步分离和专业化,加强人工智能赋能的数据科学的理论与实践以及数据科学学科(Data Science as A Discipline)与学科中的数据科学(Data Science Within A Discipline)的联动。