The effect of seed oil of Korean pine (Pinus koraiensis) on the rats' blood-fat and its anti-ageing function was stud-ied for appraising the efficacy of the seed oil of Korean pine. Sixty experimental rats were ra...The effect of seed oil of Korean pine (Pinus koraiensis) on the rats' blood-fat and its anti-ageing function was stud-ied for appraising the efficacy of the seed oil of Korean pine. Sixty experimental rats were randomly divided into 5 groups (half males and half females in each group) as normal control group, high fat diet control group, and three groups (Group 1 Group 2, Group 3) that were fed with feedstuff with the contents of the seed oil of 2.0g/(kgd-1), 4.0g/(kgd-1) and 8.0g/(kgd-1), respec-tively. The indexes such as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and anti-oxidation capacity (AOC) were measured by Reagent Kit method. It was found that the seed oil of the Korean pine could reduce the content of triglyc-eride and improve SOD as well as GSH-PX activity in serum. These indexes of the rats in Group 2 fed with Korean pine seed oil of 4.0 g/(kgd-1) reached the significant level and those of rats in Group 3 fed with the seed oil of 8.0 g/(kgd-1) reached the extremely significant level. The results indicated the seed oil of Korean pine had function of regulating the level of blood-fat and anti-ageing.展开更多
The interaction between pine oil and marmatite without collectors and activators was investigated by flotation,scanning electron microscope and energy-dispersive spectrometer(SEM-EDS),infrared(IR) spectroscopy,Zet...The interaction between pine oil and marmatite without collectors and activators was investigated by flotation,scanning electron microscope and energy-dispersive spectrometer(SEM-EDS),infrared(IR) spectroscopy,Zeta potential,and first-principle theory calculations.The flotation results show that marmatite exhibits considerable floatability with the addition of pine oil.SEM-EDS results show that carbon atomic ratios on the surface are significantly high,which suggests that the flotation of marmatite is caused by the adsorption of pine oil.Further evidence of the adsorption mechanism was given by IR,and Zeta potential examining pine oil depends on the physical adsorption on the surface independently.The first-principle theory calculations indicate that pine oil molecule adsorbs on Zn and Fe atom surfaces by ionic bond and covalent bond of adsorption energies of-1.23and-1.51 eV,respectively.P orbital of O atom,s orbital of Zn atom,and d orbital of Fe are the major participants.展开更多
Experiment on ultrasound- associated extraction of seed oil of Korean pine(Pinus koraiensis) was conducted in Northeast Forestry University, Harbin, China. The factorsaffecting extraction yield, such as ultrasonic fre...Experiment on ultrasound- associated extraction of seed oil of Korean pine(Pinus koraiensis) was conducted in Northeast Forestry University, Harbin, China. The factorsaffecting extraction yield, such as ultrasonic frequency, extracting temperature, extracting timeand the ratio of material to liquid (ratio of Korean pine seed to absolute alcohol), were analyzedunder specific condition and the optimal extracting parameters were obtained as the ultrasonicfrequency 32 000 Hz, the extracting temperature 80 ℃, the extracting time 50 min, and the ratio ofmaterial to liquid 1: 30. The study demonstrates that ultrasound is a reliable and great efficiencytool for the fast extraction of Korean pine seed oil.展开更多
Loblolly pine residue prepared with and without zeolite ZSM-5 was pyrolyzed at 600℃ and the pyrolysis oil was hydrogenated using formic acid as a hydrogen source, in the presence of a Ru/activated carbon catalyst. As...Loblolly pine residue prepared with and without zeolite ZSM-5 was pyrolyzed at 600℃ and the pyrolysis oil was hydrogenated using formic acid as a hydrogen source, in the presence of a Ru/activated carbon catalyst. As indicated by the pyrolysis yield, addition of the zeolite ZSM-5 increased the yield of light oil but decreased the yield of heavy oil. The pyrolysis oils were analyzed by 13C-,31P-,19F-nuclear magnetic resonance(NMR), and heteronuclear single quantum coherence or heteronuclear single quantum correlation nuclear magnetic resonance(HSQC-NMR), demonstrating that the zeolite ZSM-5 can efficiently induce decarboxylation reactions and decrease the content of aliphatic hydroxyl groups in the heavy oil by 57%.After hydrogenation of the pyrolysis oil, the aromatic carbon content decreased by 78%, with a significant increase in the aliphatic carbon content.展开更多
文摘The effect of seed oil of Korean pine (Pinus koraiensis) on the rats' blood-fat and its anti-ageing function was stud-ied for appraising the efficacy of the seed oil of Korean pine. Sixty experimental rats were randomly divided into 5 groups (half males and half females in each group) as normal control group, high fat diet control group, and three groups (Group 1 Group 2, Group 3) that were fed with feedstuff with the contents of the seed oil of 2.0g/(kgd-1), 4.0g/(kgd-1) and 8.0g/(kgd-1), respec-tively. The indexes such as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and anti-oxidation capacity (AOC) were measured by Reagent Kit method. It was found that the seed oil of the Korean pine could reduce the content of triglyc-eride and improve SOD as well as GSH-PX activity in serum. These indexes of the rats in Group 2 fed with Korean pine seed oil of 4.0 g/(kgd-1) reached the significant level and those of rats in Group 3 fed with the seed oil of 8.0 g/(kgd-1) reached the extremely significant level. The results indicated the seed oil of Korean pine had function of regulating the level of blood-fat and anti-ageing.
基金financially supported by the National Natural Science Foundation of China(No.51174103)
文摘The interaction between pine oil and marmatite without collectors and activators was investigated by flotation,scanning electron microscope and energy-dispersive spectrometer(SEM-EDS),infrared(IR) spectroscopy,Zeta potential,and first-principle theory calculations.The flotation results show that marmatite exhibits considerable floatability with the addition of pine oil.SEM-EDS results show that carbon atomic ratios on the surface are significantly high,which suggests that the flotation of marmatite is caused by the adsorption of pine oil.Further evidence of the adsorption mechanism was given by IR,and Zeta potential examining pine oil depends on the physical adsorption on the surface independently.The first-principle theory calculations indicate that pine oil molecule adsorbs on Zn and Fe atom surfaces by ionic bond and covalent bond of adsorption energies of-1.23and-1.51 eV,respectively.P orbital of O atom,s orbital of Zn atom,and d orbital of Fe are the major participants.
文摘Experiment on ultrasound- associated extraction of seed oil of Korean pine(Pinus koraiensis) was conducted in Northeast Forestry University, Harbin, China. The factorsaffecting extraction yield, such as ultrasonic frequency, extracting temperature, extracting timeand the ratio of material to liquid (ratio of Korean pine seed to absolute alcohol), were analyzedunder specific condition and the optimal extracting parameters were obtained as the ultrasonicfrequency 32 000 Hz, the extracting temperature 80 ℃, the extracting time 50 min, and the ratio ofmaterial to liquid 1: 30. The study demonstrates that ultrasound is a reliable and great efficiencytool for the fast extraction of Korean pine seed oil.
基金supported by the US Department of Energy(DOE)(project:DE-EE0003144)the National Key Research and Development Program of China(No.2017YFB0307900)the Foundation of Guangxi Key Laboratory of Clean Pulp&Papermaking and Pollution Control(No.KF201713).
文摘Loblolly pine residue prepared with and without zeolite ZSM-5 was pyrolyzed at 600℃ and the pyrolysis oil was hydrogenated using formic acid as a hydrogen source, in the presence of a Ru/activated carbon catalyst. As indicated by the pyrolysis yield, addition of the zeolite ZSM-5 increased the yield of light oil but decreased the yield of heavy oil. The pyrolysis oils were analyzed by 13C-,31P-,19F-nuclear magnetic resonance(NMR), and heteronuclear single quantum coherence or heteronuclear single quantum correlation nuclear magnetic resonance(HSQC-NMR), demonstrating that the zeolite ZSM-5 can efficiently induce decarboxylation reactions and decrease the content of aliphatic hydroxyl groups in the heavy oil by 57%.After hydrogenation of the pyrolysis oil, the aromatic carbon content decreased by 78%, with a significant increase in the aliphatic carbon content.