Gravity-1 was the world's first carrier rocket to adopt the sea-based “three vertical” testing launch mode. This article introduces the overall layout of the launch site and the workflow of rocket testing and la...Gravity-1 was the world's first carrier rocket to adopt the sea-based “three vertical” testing launch mode. This article introduces the overall layout of the launch site and the workflow of rocket testing and launch for its maiden flight mission. The process of vertical assembly, vertical testing, vertical transportation, and sea-based hot launches are explained. Additionally, it provides an outlook on the improved “three vertical” testing and launch mode for future missions, such as land-based launches, rapid launches, and remote sea launches.展开更多
Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe seve...Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.展开更多
Lithium iron phosphate batteries have been increasingly utilized in recent years because their higher safety performance can improve the increasing trend of recurring thermal runaway accidents.However,the safety perfo...Lithium iron phosphate batteries have been increasingly utilized in recent years because their higher safety performance can improve the increasing trend of recurring thermal runaway accidents.However,the safety performance and mechanism of high-capacity lithium iron phosphate batteries under internal short-circuit challenges remain to be explored.This work analyzes the thermal runaway evolution of high-capacity LiFePO_(4) batteries under different internal heat transfer modes,which are controlled by different penetration modes.Two penetration cases involving complete penetration and incomplete penetration were detected during the test,and two modes were performed incorporating nails that either remained or were removed after penetration to comprehensively reveal the thermal runaway mechanism.A theoretical model of microcircuits and internal heat conduction is also established.The results indicated three thermal runaway evolution processes for high-capacity batteries,which corresponded to the experimental results of thermal equilibrium,single thermal runaway,and two thermal runaway events.The difference in heat distribution in the three phenomena is determined based on the microstructure and material structure near the pinhole.By controlling the heat dissipation conditions,the time interval between two thermal runaway events can be delayed from 558 to 1417 s,accompanied by a decrease in the concentration of in-situ gas production during the second thermal runaway event.展开更多
Lunar base construction is a crucial component of the lunar exploration program,and considering the dynamic characteristics of lunar soil is important for moon construction.Therefore,investigating the dynamic properti...Lunar base construction is a crucial component of the lunar exploration program,and considering the dynamic characteristics of lunar soil is important for moon construction.Therefore,investigating the dynamic properties of lunar soil by establishing a constitutive relationship is critical for providing a theoretical basis for its damage evolution.In this paper,a split Hopkinson pressure bar(SHPB)device was used to perform three sets of impact tests under different pressures on a lunar soil simulant geopolymer(LSSG)with sodium silicate(Na_(2)SiO_(3))contents of 1%,3%,5%and 7%.The dynamic stressestrain curves,failure modes,and energy variation rules of LSSG under different pressures were obtained.The equation was modified based on the ZWT viscoelastic constitutive model and was combined with the damage variable.The damage element obeys the Weibull distribution and the constitutive equation that can describe the mechanical properties of LSSG under dynamic loading was obtained.The results demonstrate that the dynamic compressive strength of LSSG has a marked strain-rate strengthening effect.Na_(2)SiO_(3) has both strengthening and deterioration effects on the dynamic compressive strength of LSSG.As Na_(2)SiO_(3) grows,the dynamic compressive strength of LSSG first increases and then decreases.At a fixed air pressure,5%Na_(2)SiO_(3) had the largest dynamic compressive strength,the largest incident energy,the smallest absorbed energy,and the lightest damage.The ZWT equation was modified according to the stress response properties of LSSG and the range of the SHPB strain rate to obtain the constitutive equation of the LSSG,and the model’s correctness was confirmed.展开更多
Data obtained from accelerated life testing (ALT) when there are two or more failure modes, which is commonly referred to as competing failure modes, are often incomplete. The incompleteness is mainly due to censori...Data obtained from accelerated life testing (ALT) when there are two or more failure modes, which is commonly referred to as competing failure modes, are often incomplete. The incompleteness is mainly due to censoring, as well as masking which might be the case that the failure time is observed, but its corresponding failure mode is not identified. Because the identification of the failure mode may be expensive, or very difficult to investigate due to lack of appropriate diagnostics. A method is proposed for analyzing incomplete data of constant stress ALT with competing failure modes. It is assumed that failure modes have s-independent latent lifetimes and the log lifetime of each failure mode can be written as a linear function of stress. The parameters of the model are estimated by using the expectation maximum (EM) algorithm with incomplete data. Simulation studies are performed to check'model validity and investigate the properties of estimates. For further validation, the method is also illustrated by an example, which shows the process of analyze incomplete data from ALT of some insulation system. Because of considering the incompleteness of data in modeling and making use of the EM algorithm in estimating, the method becomes more flexible in ALT analysis.展开更多
The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components of...The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components often fail in different operating modes, faults can be only detected in specified operating modes, tests can be available in specified operating modes,and the cost and efficiency of detecting and isolating faults are different under different operating modes and isolation levels. Aiming at these problems, an optimal test selection method for fault detection and isolation in the multi-operating mode system is proposed by using the fault pair coding and rollout algorithm. Firstly,the faults in fault-test correlation matrices under different operating modes are combined to fault-pairs, which is used to construct the fault pair-test correlation matrices under different operating modes.Secondly, the final fault pair-test correlation matrix of the multioperating mode system is obtained by operating the fault pair-test correlation matrices under different operating modes. Based on the final fault pair-test correlation matrix, the necessary tests are selected by the rollout algorithm orderly. Finally, the effectiveness of the proposed method is verified by examples of the optimal test selection in the multi-operating mode system with faults isolated to different levels. The result shows that the proposed method can effectively mine the fault detection and isolation ability of tests and it is suitable for the optimal test selection of the multi-operating mode system with faults isolated to the replacement unit and specific fault.展开更多
Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability...Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.展开更多
In view of the difficulties about school-enterprise cooperation on food safety testing laboratory reform,the current training program,teaching methods and teaching forms are not suitable for the new platform.This pape...In view of the difficulties about school-enterprise cooperation on food safety testing laboratory reform,the current training program,teaching methods and teaching forms are not suitable for the new platform.This paper provides new ideas and modes to solve these problems,such as integrating the resource elements between school and enterprise,establishing new platforms with the help of external force and innovating the cooperation modes to improve the laboratory,which can fully serve teaching,scientific research and enterprise production.展开更多
Using the self-developed visualization test apparatus, centrifuge model tests at 20 g were carried out to research the macro and microscopic formation mechanism of coarse sand debris flows. The formation mode and soil...Using the self-developed visualization test apparatus, centrifuge model tests at 20 g were carried out to research the macro and microscopic formation mechanism of coarse sand debris flows. The formation mode and soil-water interaction mechanism of the debris flows were analyzed from both macroscopic and microscopic points of view respectively using high digital imaging equipment and micro-structure analysis software Geodip. The test results indicate that the forming process of debris flow mainly consists of three stages, namely the infiltration and softening stage, the overall slide stage, and debris flow stage. The essence of simulated coarse sand slope forming debris flow is that local fluidization cause slope to wholly slide. The movement of small particles forms a transient stagnant layer with increasing saturation, causing soil shear strength lost and local fluidization. When the driving force of the saturated soil exceeds the resisting force, debris flow happens on the coarse sand slope immediately.展开更多
In order to achieve an optimal anti-seismic behavior,or rather stability,the out-of-plane stability of infill wall in frame has been researched with the shaking test of four sets of two-layer infill wall,in which four...In order to achieve an optimal anti-seismic behavior,or rather stability,the out-of-plane stability of infill wall in frame has been researched with the shaking test of four sets of two-layer infill wall,in which four different connection modes of filled with inclined bricks on the top,disconnection,flexibility and semi-flexibility were adapted.The acceleration and displacement response of the specimens were analyzed under the seismic load.Also,some feasible connection modes were gained by comparing the response of infill walls.Finally,the calculation of earthquake of infill wall was held.The results showed that seismic responses of the infill walls whose connect with frame in form of flexibility and semi-flexibility modes are weaker than others obviously,and their integrality is better.Thus the conclusion could be drawn that out-of-plane stability of the specimens with connection modes of flexibility and semi-flexibility are better than those with the connection modes of filled with inclined bricks on the top and disconnection.The research results can provide evidence for establishing specifications and directing the construction and therefore help reduce the casualties and property loss caused by earthquake disasters.展开更多
Abstract By testing and analyzing BJ-RUC forecast of one precipitation process, MODE was introduced. MODE could give objective comparison from position of precipitation falling zone, shape and direction, and reflect i...Abstract By testing and analyzing BJ-RUC forecast of one precipitation process, MODE was introduced. MODE could give objective comparison from position of precipitation falling zone, shape and direction, and reflect intensity difference between forecast and actual situation, which comprehensively reflected precipitation forecast performance of the model, and was close to subjective judgment thinking of forecaster.展开更多
Nowadays harmful gas in vehicle exhaust has pollute d air heavily. To prevent the environment from polluting, the request of emissions control legislation becomes more stringent. New legislation prescribes not only th...Nowadays harmful gas in vehicle exhaust has pollute d air heavily. To prevent the environment from polluting, the request of emissions control legislation becomes more stringent. New legislation prescribes not only the emissions limitation of vehicles, but also testing instruments and methods. Test car must be operated on the chassis dynamometer and data must be collect ed and analyzed with prescriptive exhaust analysis system as well. The mass of harmful exhaust gas, containing the concentration and volume of emis sion, which is independent from the model of automobile and engine, can be used as a criterion to evaluate the pollution of an automobile. Constant Volume Sampl e System (CVS) is used to measure vehicle emissions, but it is too expensive to apply extensively. The Vehicle Mass Analysis System(Vmas), a new vehicle exhaust mass analysis system produced in USA late 1990s,is used to test and analyze veh icle exhaust. As a test instrument, it has the virtue of cheapness and easy mana geability. In this paper, Vmas is used to measure the emissions of a light truck CA1020F. A ccording to 15 running modes of Vehicle Exhaust Legislation, the test car is ope rated on the chassis dynamometer and data are collected and analyzed with Vmas. The test results show that it is viable to measure and evaluate automobile emiss ion with Vmas. Most of HC exhaust is produced when the car is decelerating. The major factor that influences the mass of HC emission is the sudden decrease of e ngine load causing incomplete combustion in decelerating mode. Test results indi cate CO and NOx are mainly produced in the process of increasing load. The forme r reason is incomplete combustion and the latter is high burning temperature cau sed by the increasing load. The methods of reducing automobile emission are also discussed in this paper.展开更多
This paper investigates the issue of testing Current Mode Logic (CML) gates. A three-bit parity checker is used as a case study. It is first shown that, as expected, the stuck-at fault model is not appropriate for tes...This paper investigates the issue of testing Current Mode Logic (CML) gates. A three-bit parity checker is used as a case study. It is first shown that, as expected, the stuck-at fault model is not appropriate for testing CML gates. It is then proved that switching the order in which inputs are applied to a gate will affect the minimum test set;this is not the case in conventional voltage mode gates. Both the circuit output and its inverse have to be monitored to reduce the size of the test set.展开更多
There are the application scope limits for single differential-mode current injection test method, so in order to carry out injection susceptibility test for two-pieces equipment interconnected with both ends of a cab...There are the application scope limits for single differential-mode current injection test method, so in order to carry out injection susceptibility test for two-pieces equipment interconnected with both ends of a cable simultaneously, a double differential-mode current in- jection test method (DDMCI) is proposed. The method adopted the equivalence source wave theorem and Baum-Liu-Tesche(BLT) equation as its theory foundation. The equivalent corresponding relation between injection voltage and radiation electric field intensity is derived, and the phase relation between the two injection voltage sources is confirmed. The results indicate that the amplitude and phase of the equivalent injection voltage source is closely related to the S parameter of directional coupling device, the transmission line length, and the source vector in BLT equation, but has nothing to do with the reflection coefficient between the two equipment pieces. Therefore, by choosing the right amplitude and phase of the double injection voltage sources, the DDMCI test is equivalent to the radiation test for two interconnected equipment of a system.展开更多
In this paper, the new organization for unit testing embedding pair-wise mode is proposed with the core thought focused on the cooperation of programmer and tester by “cross-testing”. The typical content of unit tes...In this paper, the new organization for unit testing embedding pair-wise mode is proposed with the core thought focused on the cooperation of programmer and tester by “cross-testing”. The typical content of unit testing for the new organizing mode should have three aspects, including self-checking, cross-testing and independent-testing. For cross-testing, executing “pair-wise” mode, mainly tackles data testing, function testing and state testing, which function testing must be done by details and state testing must be considered for completeness. With the specializing of independent-testing, it should be taken as more rigid testing without arbitrariness. Consequently, strategy and measure are addressed for data testing focusing on boundary testing and function/state testing. And organizing method of procedure and key points of tackling unit testing are investigated for the new organizing mode. In order to assess the validity of our study and approach, a series of actual examples are demonstrated for GUI software. The result indicates that the execution of unit testing for the new organizing mode is effective and applicable.展开更多
Bamboo is an eco-friendly material with light weight,high strength,short growth cycle and high sustainability,which is widely used in building structures.Engineered bamboo has further promoted the development of moder...Bamboo is an eco-friendly material with light weight,high strength,short growth cycle and high sustainability,which is widely used in building structures.Engineered bamboo has further promoted the development of modern bamboo structures due to its unrestricted size and shape.However,as a fiber-reinforced material,fracture damage,especially Mode I fracture damage,becomes the most likely damage mode of its structure,so Mode I fracture characteristics are an important subject in the research of mechanical properties of bamboo.This paper summarizes the current status of experimental research on the Mode I fracture properties of bamboo based on the three-point bending(TPB)method,the single-edge notched beam(SENB)method,the compact tension(CT)method and the double cantilever beam(DCB)method,compares the fracture toughness of different species of bamboo,analyzes the toughening mechanisms and fracture damage modes,discusses the applicability of different theoretical calculation methods,and makes suggestions for future research priorities,aiming to provide a reference for future research and engineering applications in related fields.展开更多
文摘Gravity-1 was the world's first carrier rocket to adopt the sea-based “three vertical” testing launch mode. This article introduces the overall layout of the launch site and the workflow of rocket testing and launch for its maiden flight mission. The process of vertical assembly, vertical testing, vertical transportation, and sea-based hot launches are explained. Additionally, it provides an outlook on the improved “three vertical” testing and launch mode for future missions, such as land-based launches, rapid launches, and remote sea launches.
基金the financial support provided by USDOT Pipeline and Hazardous Materials Safety Administration (PHMSA)through the Competitive Academic Agreement Program (CAAP)。
文摘Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.
基金supported by the National Key R&D Program of China(2021YFB2402001)the China National Postdoctoral Program for Innovative Talents(BX20220286)+1 种基金the China Postdoctoral Science Foundation(2022T150615)supported by the Youth Innovation Promotion Association CAS(Y201768)。
文摘Lithium iron phosphate batteries have been increasingly utilized in recent years because their higher safety performance can improve the increasing trend of recurring thermal runaway accidents.However,the safety performance and mechanism of high-capacity lithium iron phosphate batteries under internal short-circuit challenges remain to be explored.This work analyzes the thermal runaway evolution of high-capacity LiFePO_(4) batteries under different internal heat transfer modes,which are controlled by different penetration modes.Two penetration cases involving complete penetration and incomplete penetration were detected during the test,and two modes were performed incorporating nails that either remained or were removed after penetration to comprehensively reveal the thermal runaway mechanism.A theoretical model of microcircuits and internal heat conduction is also established.The results indicated three thermal runaway evolution processes for high-capacity batteries,which corresponded to the experimental results of thermal equilibrium,single thermal runaway,and two thermal runaway events.The difference in heat distribution in the three phenomena is determined based on the microstructure and material structure near the pinhole.By controlling the heat dissipation conditions,the time interval between two thermal runaway events can be delayed from 558 to 1417 s,accompanied by a decrease in the concentration of in-situ gas production during the second thermal runaway event.
文摘Lunar base construction is a crucial component of the lunar exploration program,and considering the dynamic characteristics of lunar soil is important for moon construction.Therefore,investigating the dynamic properties of lunar soil by establishing a constitutive relationship is critical for providing a theoretical basis for its damage evolution.In this paper,a split Hopkinson pressure bar(SHPB)device was used to perform three sets of impact tests under different pressures on a lunar soil simulant geopolymer(LSSG)with sodium silicate(Na_(2)SiO_(3))contents of 1%,3%,5%and 7%.The dynamic stressestrain curves,failure modes,and energy variation rules of LSSG under different pressures were obtained.The equation was modified based on the ZWT viscoelastic constitutive model and was combined with the damage variable.The damage element obeys the Weibull distribution and the constitutive equation that can describe the mechanical properties of LSSG under dynamic loading was obtained.The results demonstrate that the dynamic compressive strength of LSSG has a marked strain-rate strengthening effect.Na_(2)SiO_(3) has both strengthening and deterioration effects on the dynamic compressive strength of LSSG.As Na_(2)SiO_(3) grows,the dynamic compressive strength of LSSG first increases and then decreases.At a fixed air pressure,5%Na_(2)SiO_(3) had the largest dynamic compressive strength,the largest incident energy,the smallest absorbed energy,and the lightest damage.The ZWT equation was modified according to the stress response properties of LSSG and the range of the SHPB strain rate to obtain the constitutive equation of the LSSG,and the model’s correctness was confirmed.
基金supported by Sustentation Program of National Ministries and Commissions of China (Grant No. 203020102)
文摘Data obtained from accelerated life testing (ALT) when there are two or more failure modes, which is commonly referred to as competing failure modes, are often incomplete. The incompleteness is mainly due to censoring, as well as masking which might be the case that the failure time is observed, but its corresponding failure mode is not identified. Because the identification of the failure mode may be expensive, or very difficult to investigate due to lack of appropriate diagnostics. A method is proposed for analyzing incomplete data of constant stress ALT with competing failure modes. It is assumed that failure modes have s-independent latent lifetimes and the log lifetime of each failure mode can be written as a linear function of stress. The parameters of the model are estimated by using the expectation maximum (EM) algorithm with incomplete data. Simulation studies are performed to check'model validity and investigate the properties of estimates. For further validation, the method is also illustrated by an example, which shows the process of analyze incomplete data from ALT of some insulation system. Because of considering the incompleteness of data in modeling and making use of the EM algorithm in estimating, the method becomes more flexible in ALT analysis.
基金supported by the Natural Science Foundation of Shannxi Province(2017JQ5016)the Joint Laboratory for Sea Measurement and Control of Aircraft(DOM2016OF011)
文摘The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components often fail in different operating modes, faults can be only detected in specified operating modes, tests can be available in specified operating modes,and the cost and efficiency of detecting and isolating faults are different under different operating modes and isolation levels. Aiming at these problems, an optimal test selection method for fault detection and isolation in the multi-operating mode system is proposed by using the fault pair coding and rollout algorithm. Firstly,the faults in fault-test correlation matrices under different operating modes are combined to fault-pairs, which is used to construct the fault pair-test correlation matrices under different operating modes.Secondly, the final fault pair-test correlation matrix of the multioperating mode system is obtained by operating the fault pair-test correlation matrices under different operating modes. Based on the final fault pair-test correlation matrix, the necessary tests are selected by the rollout algorithm orderly. Finally, the effectiveness of the proposed method is verified by examples of the optimal test selection in the multi-operating mode system with faults isolated to different levels. The result shows that the proposed method can effectively mine the fault detection and isolation ability of tests and it is suitable for the optimal test selection of the multi-operating mode system with faults isolated to the replacement unit and specific fault.
基金National Natural Science Foundation of China under Grant No. 41372356the College Cultivation Project of the National Natural Science Foundation of China under Grant No. 2018PY30+1 种基金the Basic Research and Frontier Exploration Project of Chongqing,China under Grant No. cstc2018jcyj A1597the Graduate Scientific Research and Innovation Foundation of Chongqing,China under Grant No. CYS18026。
文摘Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.
基金Supported by Natural Science Foundation of Shandong Province(ZR2018PC010)Teaching and Research Project of Binzhou University(BZXYSYXM201810).
文摘In view of the difficulties about school-enterprise cooperation on food safety testing laboratory reform,the current training program,teaching methods and teaching forms are not suitable for the new platform.This paper provides new ideas and modes to solve these problems,such as integrating the resource elements between school and enterprise,establishing new platforms with the help of external force and innovating the cooperation modes to improve the laboratory,which can fully serve teaching,scientific research and enterprise production.
基金Funded by National Natural Science Foundation of China(Grant No.41272296)
文摘Using the self-developed visualization test apparatus, centrifuge model tests at 20 g were carried out to research the macro and microscopic formation mechanism of coarse sand debris flows. The formation mode and soil-water interaction mechanism of the debris flows were analyzed from both macroscopic and microscopic points of view respectively using high digital imaging equipment and micro-structure analysis software Geodip. The test results indicate that the forming process of debris flow mainly consists of three stages, namely the infiltration and softening stage, the overall slide stage, and debris flow stage. The essence of simulated coarse sand slope forming debris flow is that local fluidization cause slope to wholly slide. The movement of small particles forms a transient stagnant layer with increasing saturation, causing soil shear strength lost and local fluidization. When the driving force of the saturated soil exceeds the resisting force, debris flow happens on the coarse sand slope immediately.
基金Sponsored by the National Key Technology R&D Program in the 11th Five Year Plan of China(Grant No.2008BAJ08B11-03)Ministry of Construction Research and Development Project of China(Grant No.06-k6-17)
文摘In order to achieve an optimal anti-seismic behavior,or rather stability,the out-of-plane stability of infill wall in frame has been researched with the shaking test of four sets of two-layer infill wall,in which four different connection modes of filled with inclined bricks on the top,disconnection,flexibility and semi-flexibility were adapted.The acceleration and displacement response of the specimens were analyzed under the seismic load.Also,some feasible connection modes were gained by comparing the response of infill walls.Finally,the calculation of earthquake of infill wall was held.The results showed that seismic responses of the infill walls whose connect with frame in form of flexibility and semi-flexibility modes are weaker than others obviously,and their integrality is better.Thus the conclusion could be drawn that out-of-plane stability of the specimens with connection modes of flexibility and semi-flexibility are better than those with the connection modes of filled with inclined bricks on the top and disconnection.The research results can provide evidence for establishing specifications and directing the construction and therefore help reduce the casualties and property loss caused by earthquake disasters.
基金Supported by National "11th Five-year" Science and Technology Support Item,China(2008BAC37B012008BAC37B05)Item of Tianjin Meteorological Service,China(201002)
文摘Abstract By testing and analyzing BJ-RUC forecast of one precipitation process, MODE was introduced. MODE could give objective comparison from position of precipitation falling zone, shape and direction, and reflect intensity difference between forecast and actual situation, which comprehensively reflected precipitation forecast performance of the model, and was close to subjective judgment thinking of forecaster.
文摘Nowadays harmful gas in vehicle exhaust has pollute d air heavily. To prevent the environment from polluting, the request of emissions control legislation becomes more stringent. New legislation prescribes not only the emissions limitation of vehicles, but also testing instruments and methods. Test car must be operated on the chassis dynamometer and data must be collect ed and analyzed with prescriptive exhaust analysis system as well. The mass of harmful exhaust gas, containing the concentration and volume of emis sion, which is independent from the model of automobile and engine, can be used as a criterion to evaluate the pollution of an automobile. Constant Volume Sampl e System (CVS) is used to measure vehicle emissions, but it is too expensive to apply extensively. The Vehicle Mass Analysis System(Vmas), a new vehicle exhaust mass analysis system produced in USA late 1990s,is used to test and analyze veh icle exhaust. As a test instrument, it has the virtue of cheapness and easy mana geability. In this paper, Vmas is used to measure the emissions of a light truck CA1020F. A ccording to 15 running modes of Vehicle Exhaust Legislation, the test car is ope rated on the chassis dynamometer and data are collected and analyzed with Vmas. The test results show that it is viable to measure and evaluate automobile emiss ion with Vmas. Most of HC exhaust is produced when the car is decelerating. The major factor that influences the mass of HC emission is the sudden decrease of e ngine load causing incomplete combustion in decelerating mode. Test results indi cate CO and NOx are mainly produced in the process of increasing load. The forme r reason is incomplete combustion and the latter is high burning temperature cau sed by the increasing load. The methods of reducing automobile emission are also discussed in this paper.
文摘This paper investigates the issue of testing Current Mode Logic (CML) gates. A three-bit parity checker is used as a case study. It is first shown that, as expected, the stuck-at fault model is not appropriate for testing CML gates. It is then proved that switching the order in which inputs are applied to a gate will affect the minimum test set;this is not the case in conventional voltage mode gates. Both the circuit output and its inverse have to be monitored to reduce the size of the test set.
基金Project supported by Arm Pre-research Program (51333040101), National Defense 973 Program (6131380301 ), National Natural Science Foundation of China (61040003).
文摘There are the application scope limits for single differential-mode current injection test method, so in order to carry out injection susceptibility test for two-pieces equipment interconnected with both ends of a cable simultaneously, a double differential-mode current in- jection test method (DDMCI) is proposed. The method adopted the equivalence source wave theorem and Baum-Liu-Tesche(BLT) equation as its theory foundation. The equivalent corresponding relation between injection voltage and radiation electric field intensity is derived, and the phase relation between the two injection voltage sources is confirmed. The results indicate that the amplitude and phase of the equivalent injection voltage source is closely related to the S parameter of directional coupling device, the transmission line length, and the source vector in BLT equation, but has nothing to do with the reflection coefficient between the two equipment pieces. Therefore, by choosing the right amplitude and phase of the double injection voltage sources, the DDMCI test is equivalent to the radiation test for two interconnected equipment of a system.
文摘In this paper, the new organization for unit testing embedding pair-wise mode is proposed with the core thought focused on the cooperation of programmer and tester by “cross-testing”. The typical content of unit testing for the new organizing mode should have three aspects, including self-checking, cross-testing and independent-testing. For cross-testing, executing “pair-wise” mode, mainly tackles data testing, function testing and state testing, which function testing must be done by details and state testing must be considered for completeness. With the specializing of independent-testing, it should be taken as more rigid testing without arbitrariness. Consequently, strategy and measure are addressed for data testing focusing on boundary testing and function/state testing. And organizing method of procedure and key points of tackling unit testing are investigated for the new organizing mode. In order to assess the validity of our study and approach, a series of actual examples are demonstrated for GUI software. The result indicates that the execution of unit testing for the new organizing mode is effective and applicable.
基金This work was supported by the National Natural Science Foundation of China(Nos.51878354&51308301)the Natural Science Foundation of Jiangsu Province(Nos.BK20181402&BK20130978)+3 种基金333 Talent High-Level Project of Jiangsu ProvinceQinglan Project of Jiangsu Higher Education Institutionsand the Ministry of Housing and Urban-Rural Science Project of Jiangsu Province under Grant(No.2021ZD10)Any research results expressed in this paper are those of the writer(s)and do not necessarily reflect the views of the foundations.
文摘Bamboo is an eco-friendly material with light weight,high strength,short growth cycle and high sustainability,which is widely used in building structures.Engineered bamboo has further promoted the development of modern bamboo structures due to its unrestricted size and shape.However,as a fiber-reinforced material,fracture damage,especially Mode I fracture damage,becomes the most likely damage mode of its structure,so Mode I fracture characteristics are an important subject in the research of mechanical properties of bamboo.This paper summarizes the current status of experimental research on the Mode I fracture properties of bamboo based on the three-point bending(TPB)method,the single-edge notched beam(SENB)method,the compact tension(CT)method and the double cantilever beam(DCB)method,compares the fracture toughness of different species of bamboo,analyzes the toughening mechanisms and fracture damage modes,discusses the applicability of different theoretical calculation methods,and makes suggestions for future research priorities,aiming to provide a reference for future research and engineering applications in related fields.